

TI-86 GRAPHING CALCULATOR GUIDEBOOK

TI-GRAPH LINK, Calculator-Based Laboratory, CBL, CBL 2, Calculator-Based Ranger, CBR, Constant Memory, Automatic Power Down, APD, and EOS are trademarks of Texas Instruments Incorporated.

Windows is a registered trademark of Microsoft Corporation. IBM is a registered trademark of International Business Machines Corporation Macintosh is a registered trademark of Apple Computer, Inc.

Copyright © 1997, 2001 by Texas Instruments Incorporated

Important

Texas Instruments makes no warranty, either expressed or implied, including but not limited to any implied warranties of merchantability and fitness for a particular purpose, regarding any programs or book materials and makes such materials available solely on an "as-is" basis.

In no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials, and the sole and exclusive liability of Texas Instruments, regardless of the form of action, shall not exceed the purchase price of this equipment. Moreover, Texas Instruments shall not be liable for any claim of any kind whatsoever against the use of these materials by any other party.

US FCC Information Concerning Radio Frequency Interference

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference with radio communications. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, you can try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/television technician for help.

Table of Contents

TI-86 Quick Start

Displaying and Entering Functions in the Equation Editor	r9
Changing the Graph Style of a Function	10
Plotting a Function on the Graph Screen	11
Tracing a Function	11
Evaluating y for a Specific x Value (During a Trace)	12
Changing a Window Variable Value	12
Deselecting a Function	13
Zooming In on a Portion of the Graph Screen	14

Chapter 1: Operating the TI-86

1

Installing or Replacing Batteries	.16
When to Replace Batteries	.16
Turning On and Turning Off the TI-86	.17
Adjusting the Display Contrast	.17
The Home Screen	.18
Displaying Entries and Answers	.18
Entering Numbers	.19
Entering Negative Numbers	.19
Using Scientific or Engineering Notation	.20
Entering Complex Numbers	.20
Entering Other Characters	.21
The 2nd Key	

15

The ALPHA Key	21
ALPHA-lock and alpha-lock	
Common Cursors	
Cursor Direction Keys	23
Inserting, Deleting, and Clearing Characters	23
Entering Expressions and Instructions	24
Entering an Expression	24
Using Functions in Expressions	
Using an Instruction	25
Entering Functions, Instructions, and Operators	
Entering Consecutive Entries	
The Busy Indicator	
Interrupting a Calculation or Graph	
Diagnosing an Error	27
Correcting an Error	
Reusing Previous Entries and the Last Answer	
Retrieving the Last Entry	
Retrieving and Editing the Last Entry	
Retrieving Previous Entries	
Retrieving Multiple Entries	29
Clearing the ENTRY Storage Area	
Retrieving the Last Answer	
Using Ans Preceding a Function	
Storing Results to a Variable	
Using TI-86 Menus	

Displaying a Menu	31
The Menu Keys	32
Selecting a Menu Item	32
Exiting (Removing) a Menu	
Viewing and Changing Modes	34
Changing a Mode Setting	34

Chapter 2: The CATALOG, Variables, and Characters 37

The CATALOG	38
Storing Data to Variables	39
Creating a Variable Name	39
Storing a Value to a Variable Name	40
Storing an Unevaluated Expression	40
Storing an Answer	41
Copying a Variable Value	41
Displaying a Variable Value	41
Recalling a Variable Value	42
Classifying Variables as Data Types	42
The CATLG-VARS (CATALOG-Variables) Menu	43
Selecting a Variable Name	44
The CUSTOM Menu	44
Entering CUSTOM Menu Items	44
Clearing CUSTOM Menu Items	45
Deleting a Variable from Memory	45

V

The CHAR (Character) Menu	45
The CHAR MISC (Miscellaneous) Menu	46
The CHAR GREEK Menu	46
The CHAR INTL (International) Menu	46
Adding a Modifier to a Vowel	46

47

Chapter 3: Math. Calculus, and Test Operations

indin, carcanas, and rest operations	
Keyboard Mathematical Functions	48
The MATH Menu	
The MATH NUM (Number) Menu	
The MATH PROB (Probability) Menu	50
The MATH ANGLE Menu	51
The MATH HYP (Hyperbolic) Menu	51
The MATH MISC (Miscellaneous) Menu	52
The Interpolate/Extrapolate Editor	53
The CALC (Calculus) Menu	54
The TEST (Relational) Menu	55
Using Tests in Expressions and Instructions	56

Chapter 4: Constants,

Conversions, Bases, and Complex Numbers 57

Using Built-In and User-Created Constants	58
The CONS (Constants) Menu	58
The CONS BLTIN (Built-In Constants) Menu	58

Creating or Redefining a User-Created Constant	60
The Constant Editor Menu	60
Entering a Constant Name in an Expression	61
Converting Units of Measure	
Converting a Unit of Measure	61
The CONV (Conversions) Menu	62
The CONV LNGTH (Length) Menu	63
The CONV AREA Menu	63
The CONV VOL (Volume) Menu	63
The CONV TIME Menu	63
The CONV TEMP (Temperature) Menu	63
The CONV MASS Menu	64
The CONV FORCE Menu	64
The CONV PRESS (Pressure) Menu	64
The CONV ENRGY (Energy) Menu	64
The CONV POWER Menu	64
The CONV SPEED Menu	64
Converting a Value Expressed as a Rate	65
Number Bases	
Number Base Ranges	
One's and Two's Complements	
The (Number) BASE Menu	66
The BASE A-F (Hexadecimal Characters) Menu	67
Entering Hexadecimal Digits	67
The BASE TYPE Menu	67

The BASE CONV (Conversion) Menu	68
Converting Number Bases	68
The BASE BOOL (Boolean) Menu	68
Results of Boolean Operations	69
The BASE BIT Menu	69
Using Complex Numbers	70
Complex Results	70
Using a Complex Number in an Expression	71
The CPLX (Complex Number) Menu	71

Chapter 5: Function Graphing

Defining a Graph	74
Setting the Graph Mode	74
The GRAPH Menu	
Using the Equation Editor	76
The Equation Editor (GRAPH y(x)=) Menu	76
Defining a Function in the Equation Editor	77
Notes about Defining Function Equations	78
Selecting Graph Styles	79
Setting the Graph Style in the Equation Editor	80
Using Shading Patterns to Differentiate Functions	80
Viewing and Changing On/Off Status of Stat Plots	81
Setting the Window Variables	81
Displaying the Window Editor	
Changing a Window Variable Value	

Setting Graphing Accuracy with Δx and Δy	83
Setting the Graph Format	
Displaying a Graph	
Pausing or Stopping a Graph in Progress	
Modifying a Drawn Graph	85
Graphing a Family of Curves	86
Smart Graph	86

87

Chapter 6: Graph Tools

73

Graph Tools on the TI-86	88
The GRAPH Menu	88
Using the Free-Moving Cursor	89
Graphing Accuracy	
Tracing a Graph	90
Stopping and Resuming a Trace	91
Resizing the Graph Screen with ZOOM Operations	91
The GRAPH ZOOM Menu	91
Defining a Custom Zoom In	93
Setting Zoom Factors	93
Zooming In and Zooming Out on a Graph	93
Storing and Recalling Zoom Window Variable Values	95
Using Interactive Math Functions	95
The GRAPH MATH Menu	95
Settings That Affect GRAPH MATH Operations	96
Using ROOT, FMIN, FMAX, or INFLC	97

Using ∫f(x), DIST, or ARC	98
Using dy/dx or TANLN	99
Using ISECT	
Using YICPT	100
Evaluating a Function for a Specified x	
Drawing on a Graph	101
Before Drawing on a Graph	102
Saving and Recalling Drawn Pictures	102
Clearing Drawn Pictures	103
The GRAPH DRAW Menu	
Shading Areas of a Graph	
Drawing a Line Segment	
Drawing a Vertical or Horizontal Line	106
Drawing a Circle	106
Drawing a Function, Tangent Line, or Inverse Function .	107
Drawing Freehand Points, Lines, and Curves	107
Placing Text on a Graph	108
Turning On or Turning Off Points	108

Chapter 7: Tables

Chapter 7: Tables	109
Displaying the Table	110
TABLE Menu	110
The Table	110
Independent and Dependent Variables in the Table	111
Navigating the Table	111

The Table Menus	112
Setting Up the Table	113
Viewing and Editing Dependent Variable Equations	114
Clearing the Table	114

Chapter 8: Polar Graphing

Chapter 8: Polar Graphing	115
Preview: Polar Graphing	116
Defining a Polar Graph	117
Setting Polar Graphing Mode	117
The GRAPH Menu	117
Displaying the Polar Equation Editor	118
Setting the Graph Screen Window Variables	118
Setting the Graph Format	119
Displaying the Graph	
Using Graph Tools in Pol Graphing Mode	
The Free-Moving Cursor	119
Tracing a Polar Equation	120
Moving the Trace Cursor to a θ Value	121
Using Zoom Operations	121
The GRAPH MATH Menu	122
Evaluating an Equation for a Specified θ	122
Drawing on a Polar Graph	122

Chapter 9: Parametric Graphing

Preview: Parametric Graphing	124
Defining a Parametric Graph	
Setting Parametric Graphing Mode	126
The GRAPH Menu	126
Displaying the Parametric Equation Editor	126
Selecting and Deselecting a Parametric Equation	127
Deleting a Parametric Equation	127
Setting the Graph Screen Window Variables	127
Setting the Graph Format	128
Displaying the Graph	128
Using Graph Tools in Param Graphing Mode	128
The Free-Moving Cursor	128
Tracing a Parametric Function	128
Moving the Trace Cursor to a t Value	129
Using Zoom Operations	129
The GRAPH MATH Menu	130
Evaluating an Equation for a Specified t	130
Drawing on a Parametric Graph	130

123

Chapter 10: Differential Equation Graphing 131

Defining a Differential Equation Graph	132
Setting Differential Equation Graphing Mode	132
The GRAPH Menu	133
Setting the Graph Format	133

Displaying the Differential Equation Editor	134
Setting the Graph Screen Window Variables	135
Setting the Initial Conditions	
Setting the Axes	
Differential Equation Graphing Tips	137
The Built-In Variable fldPic	
Displaying the Graph	
Entering and Solving Differential Equations	
Graphing in SlpFld Format	139
Transforming an Equation into a First-Order System	140
Graphing in DirFld Format	141
Graphing a System of Equations in FldOff Format	
Solving a Differential Equation for a Specified Value	144
Using Graph Tools in DifEq Graphing Mode	144
The Free-Moving Cursor	144
Tracing a Differential Equation	144
Moving the Trace Cursor to a t Value	145
Drawing on a Differential Equation Graph	
Drawing an Equation and Storing Solutions to Lists	145
Using ZOOM Operations	147
Drawing Solutions Interactively with EXPLR	148
Evaluating Differential Equations for a Specified t	

Chapter 11: Lists

Lists on the TI-86	152
The LIST Menu	152
The LIST NAMES Menu	153
Creating, Storing, and Displaying Lists	153
Entering a List Directly in an Expression	153
Creating a List Name by Storing a List	154
Displaying List Elements Stored to a List Name	154
Displaying or Using a Single List Element	155
Storing a New Value to a List Element	155
Complex List Elements	156
The List Editor	156
The List Editor Menu	156
Creating a List Name in the Unnamed Column	157
Inserting a List Name into the List Editor	157
Displaying and Editing a List Element	158
Deleting Elements from a List	158
Removing a List from the List Editor	158
Using List Operations	159
The LIST OPS (Operations) Menu	159
Using Mathematical Functions with Lists	161
Attaching a Formula to a List Name	
Comparing an Attached List with a Regular List	
Using the List Editor to Attach a Formula	
Using the List Editor With Attached-Formula Lists	164

Executing and Displaying Attached Formulas	164
Handling Errors Related to Attached Formulas	165
Detaching a Formula from a List Name	166
Editing an Element of a Attached Formula List	166

Chapter 12: Vectors

151

Chapter 12: Vectors	167
Vectors on the TI-86	168
Creating, Storing, and Displaying Vectors	169
The VECTR (Vector) Menu	169
The VECTR NAMES Menu	169
Creating a Vector in the Vector Editor	169
The Vector Editor Menu	170
Creating a Vector on the Home Screen	170
Creating a Complex Vector	171
Displaying a Vector	171
Using a Vector in an Expression	172
Editing Vector Dimension and Elements	172
The VECTR MATH Menu	173
The VECTR OPS (Operations) Menu	173
The VECTR CPLX (Complex) Menu	175
Using Mathematical Functions with Vectors	176

Chapter 13: Matrices

Matrices on the TI-86	178
Creating, Storing, and Displaying Matrices	178

177

178
178
179
185

Chapter 14: Statistics

Statistical Analysis on the TI-86	. 188
Setting Up a Statistical Analysis	. 188
The STAT (Statistics) Menu	. 188
Entering Statistical Data	. 189
The LIST NAMES Menu	. 189
The STAT CALC (Calculations) Menu	. 189
Automatic Regression Equation Storage	. 191
Results of a Statistical Analysis	. 192
The STAT VARS (Statistical Variables) Menu	. 192

187

Plotting Statistical Data	194
The STAT PLOT Status Screen	194
The STAT PLOT Menu	195
Setting Up a Stat Plot	195
Turning On and Turning Off a Stat Plot	195
The PLOT TYPE Menu (Selecting a Plot Type)	196
Plot Type Characteristics	196
The STAT DRAW Menu	199
Forecasting a Statistical Data Value	199

201

Chapter 15: Equation Solving

Preview: The Equation Solver	202
Entering an Equation in the Equation-Entry Editor	203
Setting Up the Interactive-Solver Editor	204
Entering Variable Values	204
Controlling the Solution with Bounds and a Guess	204
Editing the Equation	205
The Solver Menu	
Solving for the Unknown Variable	
Graphing the Solution	207
Solver Graph Tools	207
The Solver ZOOM Menu	
The Simultaneous Equation Solver	208
Entering Equations to Solve Simultaneously	
Storing Equation Coefficients and Results to Variables	210
The Polynomial Root-Finder	211

Entering and Solving a Polynomial2	11
Storing a Polynomial Coefficient or Root to a Variable2	12
Chapter 16: Programming 2 ⁻	13
Writing a Program on the TI-862	14
The PRGM Menu2	
Creating a Program in the Program Editor	14
The Program Editor Menu2	15
The PRGM I/O (Input/Output) Menu2	15
The TI-86 Key Code Diagram2	17
The PRGM CTL Menu	
Entering a Command Line2	20
Menus and Screens in the Program Editor2	20
Running a Program2	
Breaking (Interrupting) a Program2	22
Working with Programs2	23
Managing Memory and Deleting a Program2	23
Editing a Program2	23
Calling a Program from Another Program2	24
Copying a Program to Another Program Name2	25
Using and Deleting Variables within a Single Program2	25
Running an Assembly Language Program2	
Entering and Storing a String2	26
The STRNG (String) Menu2	27
Creating a String2	27

Chapter 17: Memory Management	229
Checking Available Memory	230
The MEM (Memory) Menu	230
Checking Memory Usage	230
Deleting Items from Memory	231
The MEM DELET (Delete) Menu	231
Resetting the TI-86	232
The MEM RESET (Reset) Menu	232
ClrEnt (Clear Entry)	232
Chapter 18: The TI-86 Communication Link	233

TI-86 Linking Options	234
Linking Two TI-86s	234
Linking a TI-86 and a TI-85	234
Linking a TI-86 and a CBL 2/CBL or CBR System	234
Linking a TI-86 and a PC or Macintosh	235
Downloading Programs from the Internet	235
Connecting the TI-86 to Another Device	235
The LINK Menu	236
Selecting Data to Send	236
The LINK SEND Menu	236
Initiating a Memory Backup	237
Selecting Variables to Send	238
The SEND WIND (Window Variables) Screen	238
Sending Variables to a TI-85	239

The LINK SND85 (Send Data to TI-85) Menu	239
Preparing the Receiving Device	240
Transmitting Data	240
Receiving Transmitted Data	241
Repeating Transmission to Several Devices	242
Error Conditions	242
Insufficient Memory in Receiving Unit	242

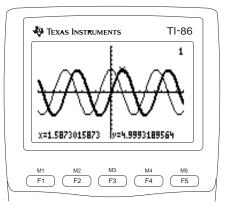
Chapter 19: Applications

Using Math Operations with Matrices	244
Finding the Area between Curves	245
The Fundamental Theorem of Calculus	246
Electrical Circuits	248
Program: Taylor Series	250
Characteristic Polynomial and Eigenvalues	252
Convergence of the Power Series	254
Reservoir Problem	256
Predator-Prey Model	258
Program: Sierpinski Triangle	260

Chapter 20:

A to Z Function and Instruction Reference 261

Quick-Find Locator	
Alphabetical Listing of Operations	


Appendix	379
TI-86 Menu Map	380
Handling a Difficulty	
Error Conditions	
Equation Operating System (EOS™)	397
Implied Multiplication	397
Parentheses	397
TOL (The Tolerance Editor)	
Computational Accuracy	
Support and Service Information	
Product Support	
Product Service	401
Other TI Products and Services	401
Warranty Information	402
Customers in the U.S. and Canada Only	
Australia & New Zealand Customers Only	
All Customers outside the U.S. and Canada	404

Index

243

TI-86 Quick Start

Preparing to Use Your New TI-86	. 2
Calculating on the Home Screen	. 3
Plotting Functions on the Graph Screen	. 9

Preparing to Use Your New TI-86

The brief examples in the TI-86 Quick Start demonstrate some common TI-86 features. Before you begin, you must install the batteries, turn on the calculator, adjust the contrast, and reset the memory and the defaults. Chapter 1 has more details on these topics.

Installing the AAA Batteries

Four AAA batteries are included in the TI-86 retail package. Remove the batteries from the package and install them in the battery compartment on the back of the calculator. Arrange the batteries according to the polarity (+ and -) diagram in the battery compartment.

Turning On and Turning Off the TI-86

To turn on the TI-86, press \boxed{ON} , which is in the bottom-left corner of the keyboard. You should see the entry cursor (\blacksquare) blinking in the top-left corner of the screen. If you do not see it, adjust the contrast (see below).

To turn off the calculator, press 2nd, and then the key under OFF, which is ON. This guidebook uses brackets ([and]) to express 2nd and ALPHA keystroke combinations. For example, to turn off the TI-86, press 2nd [OFF].

Adjusting the Contrast

- 1 Press and release the yellow 2nd key.
- **2** Press and hold \frown or \bigtriangledown (above or below the half-shaded circle).
 - To darken the screen contrast, press and hold .
 - To lighten the screen contrast, press and hold $\overline{\bullet}$.

After about four minutes of inactivity, the TI-86 turns off automatically.

If you release or view while adjusting the contrast, you must press 2nd again to continue the adjustment. **Resetting All Memory and Defaults**

To reset all memory and defaults, press [2nd] [MEM] [F3] [F1] [F4]. The messages Mem cleared and Defaults set are displayed on the home screen, confirming that all memory and defaults are reset. You may need to adjust the contrast after memory and default reset.

Calculating on the Home Screen

To replicate the screens shown in the Quick Start activities, reset all memory and defaults once before you begin. Before doing an activity, press [CLEAR] to clear the screen (except before the entry retrieval and integer-part examples). Otherwise, the screens your TI-86 shows may differ from the screens pictured next to the activities.

ST0►

Calculating the Sine of a Number

- Enter the sine function.
- 0 Enter a value. You can enter an expression, which is evaluated when you press ENTER.
- Evaluate the problem. The evaluation of the ß expression sine($\pi/4$) is displayed.

Storing the Last Answer to a Variable

Paste the store symbol (\rightarrow) to the screen. **A** Since a value must precede \rightarrow , but you did not enter a value, the TI-86 automatically pasted **Ans** before \rightarrow . (continued)

(CLEAR) SIN	sin 🛛
(2nd [π] ÷ 4)	sin (π⁄4)∎
(ENTER)	sin (π/4) .707106781187 ∎
([CLEAR])	Ans→©

To express [2nd] and [ALPHA] keystroke combinations, this quidebook places brackets ([and]) around the word above the key to press.

The TI-86 on-screen division symbol is a forward slash (/), as in a fraction.

Following evaluation, the entry cursor automatically moves to the next line, ready for a new entry.

When the TI-86 evaluates an expression, it automatically stores the answer to the builtin variable Ans, replacing any previous value.

When ALPHA-lock is on and you press a key, the letters printed in blue above the keys are pasted to the screen. In the example, press 2 to enter a V.

2	Enter the variable name to which you want to store the last answer. ALPHA-lock is on.	[V]
3	Store the last answer to the variable. The stored value is displayed on the next line.	(ENTER)
Usi	ng a Variable in an Expression	
0	Enter the variable, and then square it.	$(\hline CLEAR) \\ \hline ALPHA [V] x^2 \\ \hline$
2	Evaluate. The value stored to the variable V is squared and displayed.	(ENTER)
Edi	ting an Expression	
0	Enter the expression (25+14)(4-3.2) .	(CLEAR) (25 + 14) (4 - 3 · 2 (
2	Change 3.2 to 2.3 .	•••2
3	Move the cursor to the beginning of the expression and insert a value. The insert cursor blinks between 3 and 25 .	2nd) 🗨 2nd [IN:
4	Evaluate. The result is displayed.	[ENTER]

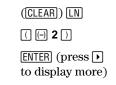
Ans→V⊡ Ans→V .707106781187 U2 ŲΣ .5 (25+14)(4-3.2)) 2)) (25+14)(4-2.3 2 🕨 3 3_25+14)(4-2.3) [INS] **3** 3(25+14)(4-2.3) 198.9

You need not move the cursor to the end of the line to evaluate the expression.

[-] negates a value, as in -2. subtracts, as in 5-2=3.

An ellipsis (...) indicates that the result continues bevond the screen.

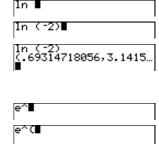
Displaying a Complex Number as a Result


- Enter the natural log function. a
- Enter a negative number. 0
- Evaluate. The result is displayed as a ß complex number.

Using a List with a Function

- Enter the exponential function. ก
- Display the LIST menu, and then select the A open brace ({) from the LIST menu.

On the TI-86, { specifies the beginning of a list.


- Enter the list elements. Separate each ß element from the next with a comma.
- Select the close brace () from the LIST **A** menu to specify the end of the list.
- Evaluate. The results of the constant **e** 6 raised to the 5th, 10th, and 15th powers are displayed as list elements.

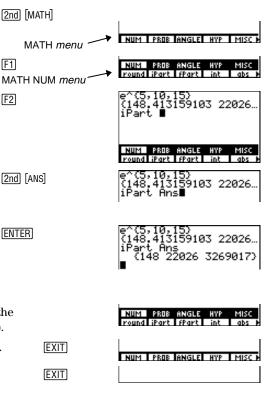
[2nd] [LIST]

F₁

F2

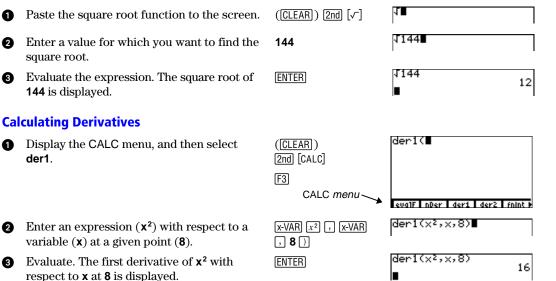
6

Displaying the Integer Part of Real Numbers in a List


F1

F2

- Display the MATH menu. (The MATH menu 6 automatically replaces the LIST menu from the last activity.)
- Select **NUM** to display the MATH NUM 2 menu. The MATH menu shifts up.
- 3 Select the **iPart** (integer part) function from the MATH NUM menu. iPart is pasted to the screen. (The previous entry was left on the screen to illustrate the effect of iPart on the previous answer.)
- Paste Ans to the cursor location. (The **A** result list from the previous activity is stored to Ans.)
- Display the integer part of the result list 6 elements from the previous activity.


Removing (Exiting) a Menu

- In the previous example, the MATH menu and the a MATH NUM menu are displayed ([2nd] [MATH] [F1]).
- Remove the MATH NUM menu from the screen. ค
- Remove the MATH menu from the screen. 3

7

Finding the Square Root

When you press ENTER, the TI-86 stores the expression or instruction you entered to the built-in memory storage area called ENTRY.

When expressing a measurement for a conversion, you do not enter a unit symbol manually. For example, you need not enter ° to designate degrees.

Retrieving, Editing, and Re-evaluating the Previous Entry

0	Retrieve the last entry from the previous example. (The last activity was not cleared.)	[2nd] [ENTRY]	der1(x²,x,8) der1(x²,x,8)∎	16
0	Edit the retrieved entry.	• • 3	der1(x²,x,8) der1(x²,x,3∎	16
3	Evaluate. The first derivative of \mathbf{x}^2 with respect to \mathbf{x} at 3 is displayed.	(ENTER)	der1(x²,x,8) der1(x²,x,3) ∎	16 6
Co	nverting Degrees Fahrenheit to Degrees	Celsius		
0	Display the CONV menu.	(CLEAR) 2nd [CONV]	LNGTH AREA VOL TIME	TEMP
0	Display the CONV TEMP menu. The CONV menu shifts up and TEMP is highlighted.	F5	LNGTH AREA VOL TIME *C *F *K *R	TEMP
3	Enter the known measurement. If the measurement is negative, use parentheses. In this example, if you omit parentheses, the TI-86 converts 4°F to about -15.5°C, which it then negates (changes the sign of), returning a positive 15.5°C.	() 4)	(-4) LNGTH AREA VOL TIME °C °F °K °R	TEMP
4	Select $^{\circ}F$ to designate Fahrenheit as the known measurement unit. $^{\circ}F$ and the conversion symbol (\blacktriangleright) are displayed after the measurement. (continued)	F2	(-4)°F▶∎ LNGTH AREA VOL TIME °C °F °K °R	TEMP

16

16

16

6

9

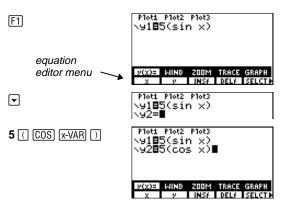
-4)°F⊁°C Select °C to designate Celsius as the unit **F1** 6 to which you want to convert. -4)°F⊁°C 6 Convert. The °C equivalent of -4°F is ENTER -20 displayed. Storing an Unevaluated Expression to an Equation Variable 91 ([CLEAR]) [2nd] [alpha] [Y] 1 Enter the built-in equation variable **v1**. [ALPHA] [=] 91= Enter the equals sign (=). ค 91=5(sin x) Enter an expression in terms of **x**. **5** (| SIN [x-VAR]) 3 Done Store the expression. ENTER 4

The next section shows how to graph the functions y1=5(sin x) and y2=5(cos x).

Plotting Functions on the Graph Screen

The TI-86 plots four types of functions on the graph screen. To plot a graph, you must store an unevaluated expression to a built-in equation variable.

Each activity in this section builds upon the activity that precedes it. You must start here and perform the activities in the sequence in which they are presented. The first activity in this section assumes you are continuing from the last activity in the previous section.


Displaying and Entering Functions in the Equation Editor

Display the GRAPH menu. (continued) GRAPH

2(x)= WIND ZOOM TRACE GRAPH

When storing to an equation variable using =, enter the equation variable first, then =, and then the unevaluated expression. This is the opposite from the order for storing to most other variables on the TI-86. In the equation editor, you must express each equation in terms of the independent variable **x** (in **Func** graphing mode only; Chapter 5).

- Select y(x)= from the GRAPH menu to display the equation editor. 5(sin x) is the unevaluated expression stored to y1 in the previous activity. The equation editor menu is displayed as the lower menu.
- 3 Move the cursor down. The **y2=** prompt is displayed.
- Enter the expression 5(cos x) at the y2= prompt. Notice that the equals sign (=) of y2 is highlighted after you enter 5. Also, the equals sign of y1 is highlighted. This indicates that both equations are selected to be graphed (Chapter 5).

Changing the Graph Style of a Function

In the equation editor, the icon to the left of each equation specifies the style in which the graph of that equation appears when you plot it on the graph screen.

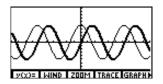
- Move the cursor to **y1**.
- 2 Display the next menu group of the equation editor menu. () at the end of a menu group indicates that the menu has more items.)
- Select STYLE from the equation editor menu to set i (thick) graph style for y1.

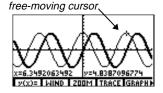
	Ploti Plot2 Plot3 \y188(sin x) \y285(cos x)
MORE	V(X)=1 WIND 200M TRACE GRAPH All+ All- Style
F3 graph style icons	Ploti Plot2 Plot3 Ny18∎(sin X) Ny285(cos X)

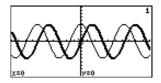
To display up to seven graph styles, depending on the graphing mode, repeat F3.

Plotting a Function on the Graph Screen

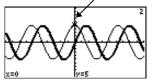
- Select **GRAPH** from the GRAPH menu to plot the graph on the graph screen. The xand y-axes and GRAPH menu are displayed. Then each selected graph is plotted in the order in which it is listed in the equation editor.
- 2 When the graph is plotted, you can move the free-moving cursor (+) around the graph screen. The cursor coordinates are displayed at the bottom of the graph.


Tracing a Function


- Select TRACE from the GRAPH menu to activate the trace cursor, with which you can trace along the graph of any selected function. The number of the current function (the 1 in y1) is displayed in the top-right corner.
- Move the trace cursor from the function y1 to the function y2. The 1 in the top-right corner changes to 2; the y value changes to the value of y2 at x=0. (continued)


2nd [M5]

 $\blacktriangleright \frown \bullet \bullet$

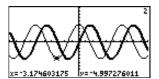

F4

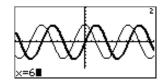
trace cursor

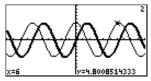
Trace the function y2. As you trace, the displayed y value is the solution for 5(cos x) at the current x value, which also is displayed on the screen.

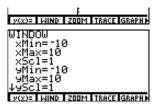
Evaluating y for a Specific x Value (During a Trace)

- Enter a real number (or an expression that resolves to a real number) that is within the dimensions of the current graph screen. When you enter the first character, the x= prompt is displayed.
- 2 Evaluate y2 at x=6. The trace cursor moves directly to the solution. The y value, or solution of the equation at x, is displayed on the screen.


Changing a Window Variable Value


- 1 Display the GRAPH menu.
- Select WIND from the GRAPH menu to display the window editor.




ENTER

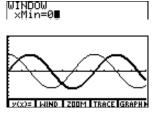
 \blacktriangleright and \blacksquare

The window variables values determine the dimensions of the graph screen.

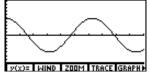
- 3 Change the value stored in the **xMin** window variable to **0**.
- Plot the graph on the redefined graph screen. Since **xMin=0**, only the first and fourth quadrants of the graph plane are displayed.

Deselecting a Function

- Select y(x)= from the GRAPH menu to display the equation editor and equation editor menu. The GRAPH menu shifts up and y(x)= is highlighted.
- Select SELCT from the equation editor menu to deselect the function y1=. The equals sign is no longer highlighted.
- Plot the graph on the graph screen. Since you deselected y1, the TI-86 only plots y2. To select a function in the equation editor, repeat these steps. (SELCT both selects and deselects functions.)

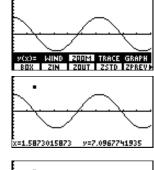

0

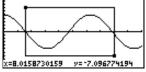
F5

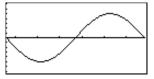

F1

[F5]

[2nd] [M5]



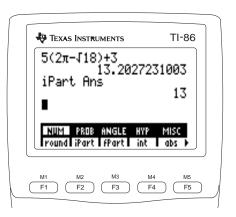




Zooming In on a Portion of the Graph Screen

- Select ZOOM to display the GRAPH ZOOM F3 menu. The GRAPH menu shifts up and ZOOM is highlighted.
- 2 Select **BOX** from the GRAPH ZOOM menu to activate the zoom-box cursor.
- Move the zoom-box cursor to a point that is to be a corner of the redefined graph screen, and then mark the point with a small square.
- Move the cursor away from the small square to a point that is to be the opposite corner of the redefined graph screen. As you move the cursor, a rectangle is drawn on the graph.
- Zoom in on the graph. The window variables change automatically to the specifications of the zoom box.
- 6 Clear the menus from the graph screen.

 $\mathbf{F} \mathbf{F} \mathbf{F}$


F1

CLEAR

Operating the TI-86

Installing or Replacing Batteries	.16
Turning On and Turning Off the TI-86	.17
Adjusting the Display Contrast	. 17
The Home Screen	.18
Entering Numbers	. 19
Entering Other Characters	. 20
Entering Expressions and Instructions	.24
Diagnosing an Error	. 27
Reusing Previous Entries and the Last Answer	. 28
Using TI-86 Menus	. 31
Viewing and Changing Modes	. 34

Installing or Replacing Batteries

Your new TI-86 includes four AAA alkaline batteries. You must install them before you can turn on the calculator. A lithium backup battery is installed in the calculator already.

- 1 If the calculator is on, turn it off (press [2nd] [OFF]) to avoid loss of information stored in memory.
- 2 Slide the protective cover over the keyboard.
- 3 Holding the calculator upright, push down on the battery cover latch, and then remove the cover.
- 4 Remove all four old batteries.
- Install four new AAA alkaline batteries, arranged according to the polarity (+ and -) diagram inside the battery compartment.
- Replace the battery cover by inserting the two prongs into the two slots at the bottom of the battery compartment, and then push the cover until the latch snaps closed.

When to Replace Batteries

When the AAA batteries are low, a low-battery message is displayed as you turn on the calculator. Generally, the calculator will continue to operate for one or two weeks after the low-battery message is first displayed. Eventually, the TI-86 will turn off automatically and will not operate until you replace the AAA batteries.

Your batteries are low. Recommend chan9e of batteries.

The lithium backup battery is inside the battery compartment, above the AAA batteries. It retains all memory when the AAA batteries are low or have been removed. To avoid loss of data, do not remove the lithium battery unless four fresh AAA batteries are installed. Replace the lithium backup battery about every three or four years.

To express [2nd] and [ALPHA] keystroke combinations, this guidebook places brackets ([and]) around the word above the key to press.

Do not remove the lithium backup battery unless four fresh AAA batteries are in place.

Properly dispose of the old batteries.

If you do not use your TI-86 frequently, the AAA batteries could last more than two weeks after the first lowbattery message. Properly dispose of the old battery.

To replace the lithium backup battery, remove the battery cover and unscrew the tiny screw holding the BACK UP BATTERY cover in place. Install a new CR1616 or CR1620 battery according to the polarity (+ and -) diagram on the cover. Replace the cover and screw.

Turning On and Turning Off the TI-86

To turn on the TI-86, press [ON].

- If you previously had turned off the calculator by pressing [2nd] [OFF], the TI-86 clears any errors and displays the home screen as it was last displayed.
- If Automatic Power DownTM (APDTM) previously had turned off the calculator, the TI-86 will return as you left it, including the display, cursor, and any error.

To turn off the TI-86 manually, press [2nd] [OFF]. All settings and memory contents are retained by the Constant Memory[™] feature. Any error condition is cleared.

APD turns off the TI-86 automatically after about four minutes of non-use to extend battery life.

Adjusting the Display Contrast

- Press and release the vellow 2nd key.
- Press and hold or (above or below the half-shaded circle).
 - To darken the screen contrast, press and hold .
 - To lighten the screen contrast, press and hold $\overline{\checkmark}$.

If you release
or
while adjusting the contrast, you must press [2nd] again to continue the adjustment.

The TI-86 has 40 contrast settings, so each number 0 through 9 represents four settings. You can adjust the display contrast anytime to suit your viewing angle and lighting conditions. As you adjust, a number from **0** (lightest) to **9** (darkest) in the top-right corner indicates the current contrast setting. The number is not visible when the contrast is extremely light or dark.

As the batteries weaken over time, the actual contrast level of each number shifts. For example, say you set the contrast to **3** with fresh batteries. As the batteries weaken, you will need to set the contrast to **4**, then **5**, then **6**, and so on, to retain the original contrast level. However, you need not replace the batteries until the low-battery message is displayed.

The Home Screen

When you first turn on your TI-86, the home screen is displayed. Initially, the home screen is a blank screen, except for the entry cursor (\blacksquare) in the top-left corner. If you do not see the cursor, press 2nd, and then press and hold \bigtriangledown or \checkmark to adjust the contrast (page 17).

On the home screen, you can enter and evaluate expressions, and view the results. You also can execute instructions, store and recall variable values, and set up graphs and editors.

To return to the home screen from any other screen, press [2nd] [QUIT].

Displaying Entries and Answers

The home screen displays up to eight lines with a maximum of 21 characters per line. If an expression or series of instructions exceeds 21 characters and spaces, it automatically continues on the next line.

After all eight lines are full, text scrolls off the top of the display. You can press 🔺 to scroll up the home screen, only as far as the first character in the current entry. To retrieve, edit, and re-execute previous entries, use 2nd [ENTRY] (page 28).

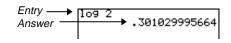
You need not clear the home screen to begin a new entry.

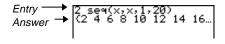
The mode settings control the way the TI-86 interprets expressions and displays answers (page 34).

The TI-86 on-screen division symbol is a forward slash (/), as in a fraction.

Always use parentheses to clarify negation when you use conversion instructions (Chapter 4). When an entry is executed on the home screen, the answer is displayed on the right side of the next line. When you execute an instruction, **Done** is typically displayed on the right side of the next line.

If an answer is too long to display on the screen, an ellipsis (...) is displayed, initially to the right. To view more of the answer, press \triangleright . When you do, an ellipsis is displayed to the left. To scroll back, press \triangleleft .


Entering Numbers


A symbol or abbreviation of each key's primary function is printed in white on the key. For example, when you press +, a plus sign is pasted to the cursor location. This guidebook describes number-entry keystrokes as **1**, **2**, **3**, and so on, instead of 123.

Entering Negative Numbers

To enter a negative number, press (-) (the negate key), and then press the appropriate number keys. For example, to enter -5, press (-) 5. Do not attempt to express a negative number using - (the subtract key). (-) and - are two different keys with different uses.

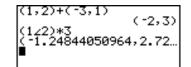
The order in which the TI-86 evaluates negation and other functions within an expression is governed by the Equation Operating SystemTM (Appendix). For example, the result of -4^2 is -16, while the result of $(-4)^2$ is 16. If you are unsure about the order of evaluation, use () and () to clarify the intended use of the negation symbol.

0

0

0

4


Using Scientific or Engineering Notation

Enter the mantissa (part of the number that precedes the exponent). This value can be an expression.	〔19 ÷ 2〕	(19/2)
Paste E to the cursor location.	EE	(19/2)e
If the exponent is negative, paste - to the cursor location. Then enter a one-, two-, or three-digit exponent.	() 2	(19/2)e-2
Evaluate the expression.	ENTER	(19/2)E ⁻² .095

When you include scientific- or engineering-notation numbers in an expression, the TI-86 does not necessarily display answers in scientific or engineering notation. The mode settings (page 34) and the size of the number determine the notation of displayed answers.

Entering Complex Numbers

On the TI-86, the complex number a+bi is entered as (a,b) in rectangular complex-number form or as $(r \ge \theta)$ in polar complex-number form. For more information about complex numbers, read Chapter 4.

Entering Other Characters

In scientific notation only, one digit precedes the decimal.

In engineering notation, one, two, or three digits precede the decimal and the power of 10 exponent is a multiple of 3.

The 2nd Key

The [2nd] key is yellow. When you press [2nd], the cursor becomes **1** (the 2nd cursor). When you press the next key, the vellow character, abbreviation, or word printed above that key is activated, instead of the key's primary function.

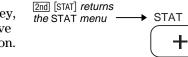
The ALPHA Key

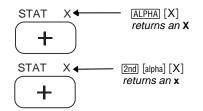
The ALPHA key is blue. When you press ALPHA, the cursor becomes 1 (the uppercase ALPHA cursor). When you press the next key, the blue uppercase character printed above that key is pasted to the cursor location.

When you press [2nd] [alpha], the cursor becomes 2 (the lowercase alpha cursor). When you press the next key, the lowercase version of the blue character is pasted to the cursor location.

ALPHA-lock and alpha-lock

To enter more than one uppercase or lowercase alpha character consecutively, set ALPHAlock (for uppercase letters) or alpha-lock (for lowercase letters).


To set ALPHA-lock when the entry cursor is displayed, press ALPHA, ALPHA.


- To cancel ALPHA-lock, press ALPHA.
- To switch from ALPHA-lock to alpha-lock, press [2nd] [alpha].

To set alpha-lock when the entry cursor is displayed, press [2nd] [alpha] [ALPHA].

To cancel alpha-lock, press [ALPHA] [ALPHA].

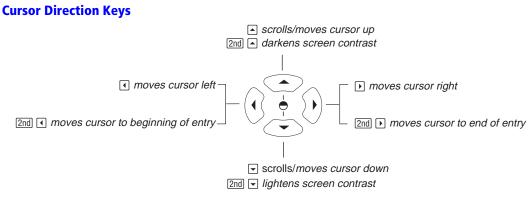
To enter a space within text, press [ALPHA] [_]. Spaces are not valid within variable names.

For convenience, you can press [x-VAR] instead of [2nd] [alpha] [X] to enter the commonly used x variable.

The Name= prompt and store symbol (\Rightarrow) set ALPHA-lock automatically.

• To switch from alpha-lock to ALPHA-lock, press ALPHA.

You can use 2nd when ALPHA-lock or alpha-lock is on. Also, if you press a key that has no blue character above it, such as GRAPH, DEL, or (1), the key's primary function still applies.


Common Cursors

Entry		Enters a character at the cursor, overwriting any existing character
Insert		Inserts a character at the cursor location and shifts remaining characters right
Second	8	Enters a 2nd character or executes a 2nd operation (yellow on the keyboard)
ALPHA	6	Enters an uppercase ALPHA character (blue on the keyboard)
alpha	а	Enters the lowercase version of an ALPHA character (blue on the keyboard)
Full		Accepts no data; maximum characters are entered at a prompt or memory is full

- If you press ALPHA after 2nd [INS], the cursor becomes an underlined A (A).
- If you press 2nd ALPHA after 2nd [INS], the cursor becomes an underlined **a** (**a**).
- If you press 2nd after 2nd [INS], the insert cursor becomes an underlined $\uparrow(\uparrow)$.

In most cases, the appearance of the cursor indicates what will happen when you press the next key.

Graphs and editors sometimes use additional cursors, which are described in other chapters.

If you hold down \blacktriangleright , \bigtriangledown , \checkmark , or \blacktriangle , the cursor continues to move.

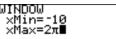
Inserting, Deleting, and Clearing Characters

The entry cursor (■) overwrites characters.

- DEL Deletes a character at the cursor; to continue deleting to the right, hold down DEL
- [CLEAR] Clears the current entry on the home screen; [CLEAR] CLEAR] clears the entire home screen

Entering Expressions and Instructions

Entering an Expression


An expression is any combination of numbers and variables that serve as arguments for one or more functions. On the TI-86, you typically enter an expression in the same order as you would write it on paper. For example, πr^2 , **5** tan xStat, and 40((-5+3)-(2+3)) are expressions.

You can use an expression on the home screen to calculate an answer.

In most places where a value is required, you can use an expression to enter the value.

For example, enter an expression as a window variable value (Chapter 5). When you press , , , ENTER, or EXIT, the TI-86 evaluates the expression and replaces it with the result.

40((-5+3)-(2+3))	-280
------------------	------

INDOW	
×Min=−10	
xMax=6.28318530718	
xScl=	

To enter an expression, you enter numbers, variables, and functions from the keyboard and menus (page 31). When you press [ENTER], the expression is evaluated (regardless of the cursor location) according to EOS order-of-evaluation rules (Appendix), and the answer is displayed.

To enter the expression $3.76 \div (-7.9 + \sqrt{5}) + 2 \log 45$ and then evaluate it, you would press these keys:

3 · 76 ÷ ((−) 7 · 9 + 2nd [√] 5) + 2 LOG 45 ENTER

3.76/	(-7.9+15)+2	109
4J ■	2.6425752	25233

Using Functions in Expressions

A function returns a value. Some examples of functions are \div , - , + , \checkmark , and log. To use functions, you usually must enter one or more valid arguments.

When this guidebook describes the syntax of a function or instruction, each argument is in italics. For example: sin *angle*. Press SIN to enter sin, and then enter a valid *angle* measurement (or an expression that resolves to *angle*). For functions or instructions with more than one argument, you must separate each argument from the other with a comma.

Some functions require the arguments to be in parentheses. When you are unsure of the evaluation order, use parentheses to clarify a function's place within an expression.

Using an Instruction

An instruction initiates an action. For example, **CIDrw** is an instruction that, when executed, clears all drawn elements from a graph. You cannot use an instruction in an expression. Generally, the first letter of each instruction name is uppercase on the TI-86. Some instructions take more than one argument, as indicated by an open parenthesis (() at the end of the name. For example, **Circl**(requires three arguments, **Circl**(x,y,radius).

Entering Functions, Instructions, and Operators

You can enter a function, instruction, or operator in any of three ways (log 45, for example).

- Paste it to the cursor location from the keyboard or a menu (LOG **45**).
- Paste it to the cursor location from the CATALOG (2nd [CATLG-VARS] F1 [L] F1 F1 ENTER 45).
- Enter it letter by letter ([2nd [alpha] ALPHA] [L] [O] [G] [...] ALPHA ALPHA 45).

As you can see in the example, using the built-in function or instruction typically is easier.

In this guidebook, optional arguments are shown in brackets ([and]). Do not include these brackets when you enter the arguments.

The A to Z Reference describes all TI-86 functions and instructions, including their required and optional arguments.

In the CATALOG, to move to the first item beginning with a letter, press that letter (as in [L] in the example). When you select a function, instruction, or operator, a symbol comprising one or more characters is pasted to the cursor location. Once the symbol is pasted to the cursor location, you can edit individual characters.

For example, assume that you pressed 2nd [CATLG-VARS] MORE MORE F5 F1 F1 ENTER to paste yMin to the cursor location as part of an expression. Then you realized you wanted xMin. Instead of pressing nine keys to select xMin, you can simply press • • • • • • AR.

Entering Consecutive Entries

In the example, the \Rightarrow symbol indicates that the value before it is to be stored to the variable after it (Chapter 2). To paste \Rightarrow to the screen, press [ST0 \Rightarrow]. To enter two or more expressions or instructions consecutively, separate each from the next with a colon ([2nd] [:]). When you press ENTER, the TI-86 executes each entry from left to right and displays the result of the last expression or instruction. The entire group entry is stored in last entry (page 28).

The Busy Indicator

When the TI-86 is calculating or graphing, a moving vertical line is displayed as the busy indicator in the top-right corner of the screen. When you pause a graph or a program, the busy indicator is replaced by the pause indicator, a moving vertical dotted line.

Interrupting a Calculation or Graph

To interrupt a calculation or graph in progress, press <u>ON</u>. When you interrupt a calculation, the **ERROR 06 BREAK** message and menu are displayed.

- To return to the home screen, select **QUIT** (press **F5**).
- To go to the beginning of the expression, select **GOTO** (press **F1**). Press **ENTER** to recalculate the expression.

Chapter 5: Function Graphing introduces graphing.

If a syntax error occurs within a stored equation during program execution, select **GOTO** to return to the equation editor, not to the program (Chapter 5). When you interrupt a graph, a partial graph and the GRAPH menu are displayed.

- To return to the home screen, press CLEAR CLEAR or any non-graphing key.
- To restart graphing, select an instruction that displays the graph.

Diagnosing an Error

When the TI-86 detects an error, it returns an error message, such as **ERROR 04 DOMAIN** or **ERROR 07 SYNTAX**. The Appendix describes each error type and possible reasons for the error.

 ◆ If you select QUIT (or press 2nd [QUIT] or CLEAR (CLEAR), the home screen is displayed.

ERROR	07	SYNT	ΆX	
GOTO				QUIT

• If you select GOTO, the previous screen is displayed with the cursor on or near the error.

Correcting an Error

- Note the error type (**ERROR** ## *errorType*).
- 2 Select GOTO, if available. The previous screen is displayed with the cursor on or near the error.
- 3 Determine the cause for the error. If you cannot, refer to the Appendix for possible causes.
- **4** Correct the error and continue.

Reusing Previous Entries and the Last Answer

Retrieving the Last Entry

When you press ENTER on the home screen to evaluate an expression or to execute an instruction, the entire expression or instruction is placed in a storage area called ENTRY (last entry). When you turn off the TI-86, ENTRY is retained in memory.

To retrieve the last entry, press [2nd] [ENTRY]. The current line is cleared and the entry is pasted to the line.

5(2π−√18)+3 13.2027231003 5(2π−√18)+3∎

Retrieving and Editing the Last Entry

0	On the home screen, retrieve the previous entry.	[2nd] [ENTRY]	5(2π−√18)+3∎
2	Edit the retrieved entry.	• • • • • 32	5(2π− √ 32 ∎ +3
3	Re-execute the edited entry.	(ENTER)	5(2π-√32)+3 6.13165528844

Retrieving Previous Entries

The TI-86 retains as many previous entries as possible in ENTRY, up to a capacity of 128 bytes. To scroll from the newest to the older previous entries stored to ENTRY, repeat [2nd] [ENTRY]. If you press [2nd] [ENTRY] after displaying the oldest stored entry, the newest stored entry is displayed again; continuing to press [2nd] [ENTRY] repeats the order.

Consecutively entered entries separated by colons (page 26) are stored as one entry.

The formula for finding the area of a circle is $A=\pi r^2$.

The equation solver (Chapter 15) is another tool with which you can perform this task.

Retrieving Multiple Entries

To store two or more expressions or instructions together to ENTRY, enter them on one line, separating each from the other with a colon, and then press ENTER. Upon execution, the entire group is stored in ENTRY. The example below shows one of many ways you can manipulate this feature to avoid tedious manual re-entry.

- Use trial and error to find the radius of a circle with an area of 200 square centimeters. Store 8 to r as your first guess, then execute πr^2 .
- 2 Retrieve 8>r:πr² and insert 7.958 as a new guess. Continue guessing to approach the answer of 200.

	8 STO► [2nd] [alpha] [R] [2nd] [:] [2nd] [π] [R] (ALPHA) [ALPHA] [x ²] [ENTER	8+r:πr ² 201.06192983
ı	[2nd] [ENTRY] [2nd]	8+r:πr ² 201.06192983 7.958+r:πr ² 198.956321336

Clearing the ENTRY Storage Area

To clear all data from the ENTRY storage area, begin on a blank line on the home screen, select **CirEnt** from the MEM menu (press <u>2nd</u> [MEM] [F5]), and then press <u>ENTER</u>.

Retrieving the Last Answer

When an expression is evaluated successfully on the home screen or in a program, the TI-86 stores the answer to a built-in variable called **Ans** (last answer). **Ans** may be a real or complex number, list, vector, matrix, or string. When you turn off the TI-86, the value in **Ans** is retained in memory.

To copy the variable name **Ans** to the cursor location, press [2nd] [ANS]. You can use the variable **Ans** anywhere that the value stored to it is valid. When the expression is evaluated, the TI-86 calculates the result using the value stored in **Ans**.

1.7*4.2

147/Ans

7.14

- Calculate the area of a garden plot 1.7 meters 1 ... 7 x 4 ... 2 by 4.2 meters.
 ENTER
- Calculate the yield per square meter if the plot 147 ÷ 2nd [ANS] produces a total of 147 tomatoes.
 ENTER

Using Ans Preceding a Function

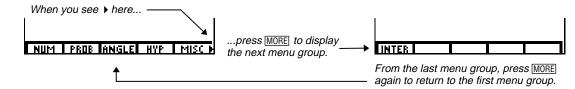
Previous answers are stored to **Ans**. If you begin an expression by entering a function that requires a preceding argument, the TI-86 automatically enters **Ans** as the argument.

Enter and execute an expression. 5 ÷ 2 ENTER a 5/22.5 × 9 · 9 Enter a function without an argument. **Ans** is 0 Ans*9.9 24.75 pasted to the screen, followed by the function. ENTER **Storing Results to a Variable** Calculate the area of a circle with radius 5 [2nd] π **5** x^2 **a** meters. [ENTER] π5² 78.5398163397 Calculate the volume of a cylinder of radius 5 × 3 · 3 0 Ans*3.3 meters and height **3.3** meters. [ENTER] 259.181393921 Ans→V Store the result to the variable **V**. 259.181393921 STO► V 3 ENTER

Using TI-86 Menus

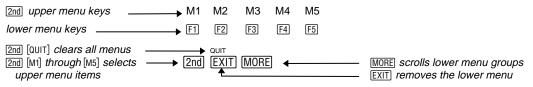
The symbols for many TI-86 features are found in menus instead of on the TI-86 keyboard.

Displaying a Menu


The way to display a particular menu depends on the menu's location on the TI-86.

Menu-Displaying Method	Example
Press a key that has a menu name on it	GRAPH displays the GRAPH menu
Press [2nd] and then a 2nd-key menu name	[2nd] [MATH] displays the MATH menu
Select a menu name from another menu	[2nd] [MATH] F1 displays the MATH NUM menu
Select an editor or selection screen	$\ensuremath{[LIST]}$ [F4] displays the list editor menu with the list editor
Accidentally commit an error	1 STO• ENTER displays the error menu

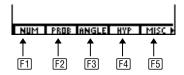
Some TI-86 menus have as
many as 25 items.


When you display a menu, a menu group of one to five items is displayed on the bottom of the screen. If the more symbol (\blacktriangleright) is displayed after the fifth item in a menu group, the menu continues for at least one more menu group. To view the next menu group, press **MORE**. The last menu group of one to five items does not have a \triangleright symbol.

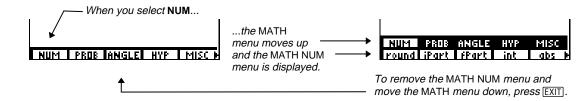
For example, press [2nd [MATH] to display the MATH menu.

 \triangleright , \bigtriangledown , \triangleleft , and \triangle do not work on menus.

The Menu Keys

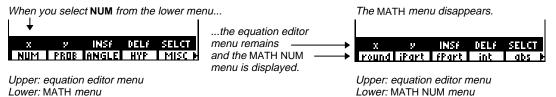


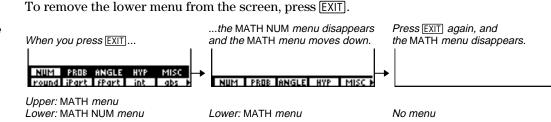
Selecting a Menu Item


The Appendix Menu Map shows every TI-86 menu.

Typically, a TI-86 menu item is five characters long or less.

When you display a menu, one to five items are displayed. To select a menu item, press the menu selection key directly below the item. For example, in the MATH menu to the right, press F1 to select **NUM**, press F2 to select **PROB**, and so on.


When you select a menu item that displays another menu, the first menu moves up one line on the screen to make room for the new menu. All items on the original menu are displayed in reverse type, except the item you selected.


MORE only scrolls the lower menu; it does not scroll the upper menu. To select an item from the upper menu, press 2nd and the appropriate key [M1] through [M5].

When an editor menu is displayed as the upper menu, and you select an item from the lower menu that displays yet another menu, the editor menu remains as the upper menu.

Exiting (Removing) a Menu

To remove a menu from the bottom of a graph screen, press CLEAR after plotting the graph (Chapter 5).

In the screen to the right, the default mode settings are highlighted along the left side of the screen.

This example changes the decimal mode setting to 2, as in U.S. dollars and cents.

In Normal notation, if the answer is more than 12 digits or the absolute value of the answer < .001, it is displayed in scientific notation.

Notation modes do not affect how you enter numbers.

Viewing and Changing Modes

To display the mode settings, press [2nd] [MODE]. The current settings are highlighted. Mode settings control how the TI-86 displays and interprets numbers and graphs. The Constant Memory feature retains current mode settings when the TI-86 is turned off. All numbers, including elements of matrices and lists, are displayed according to the mode settings.

En9

Pol Param DifEq

Oct Hex

CylU SphereU

oat 010345678901

adian Degree

Changing a Mode Setting

- Move the cursor to the line of the setting that you want to change (decimal setting in the example).
- Move the cursor to the setting you want (2 decimal places).
- Execute the change.

Notation Modes

Normal Displays results with digits to the left and right of the decimal (as in 123456.7)

Sci (scientific) Displays results in two parts: significant digits (with one digit to the left of the decimal) are displayed to the left of **E** and the appropriate power of 10 is displayed to the right of **E** (as in **1.234567E5**)

Eng (engineering) Displays results in two parts: significant digits (with one, two, or three digits to the left of the decimal) are displayed to the left of **E** and the appropriate power of 10 (which is always a multiple of 3) is displayed to the right of **E** (as in **123.4567E3**)

 \mathbf{b}

◄

ENTER

Decimal Modes

- Float (floating) Displays results up to 12 digits, plus any sign and the floating decimal point
- (fixed) (012345678901; each number is a setting) Displays results with the specified number of digits to the right of the decimal point (rounds answers to the specified decimal place); the second 0 sets 10; the second 1 sets 11

Angle Modes

Radian Interprets angle values as radians; displays answers in radians

Degree Interprets angle values as degrees; displays answers in degrees

Complex Number Modes

- **RectC** (rectangular complex mode) Displays complex-number results as (real, imaginary)
- **PolarC** (polar complex mode) Displays complex-number results as ($magnitude \angle angle$)

Graphing Modes

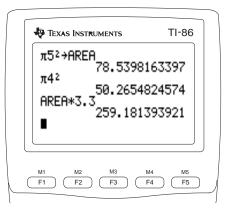
- **Func** (function graphing) Plots functions where **y** is a function of **x**
- **Pol** (polar graphing) Plots functions where **r** is a function of θ
- **Param** (parametric graphing) Plots relations where **x** and **y** are functions of **t**
- **DifEq** (differential equation graphing) Plots differential equations in terms of **t**

Number Base Modes

Dec (decimal number base) Interprets and displays numbers as decimal (base 10)

Bin (binary number base) Interprets numbers as binary (base 2); displays b suffix with answers

Oct (octal number base) Interprets numbers as octal (base 8); displays o suffix with answers


Hex (hexadecimal number base) Interprets numbers as hexadecimal (base 16); displays h suffix with answers

Non-decimal modes are valid only on the home screen or in the program editor.

Vector Coordinate Modes			
Vector modes do not affect how you enter vectors.	RectV	(rectangular vector coordinates) Displays answers in the form $[x y]$ for two-element vectors and $[x y z]$ for three-element vectors	
	CylV	(cylindrical vector coordinates) Displays results in the form $[r \angle \theta]$ for two-element vectors and $[r \angle \theta z]$ for three-element vectors	
	SphereV	(spherical vector coordinates) Displays results in the form $[r \angle \theta]$ for two-element vectors and $[r \angle \theta \angle \phi]$ for three-element vectors	
	Differentiatio	on Modes	
	dxDer1	(exact differentiation) Uses der1 (Chapter 3) to differentiate exactly and calculate the value for each function in an expression (dxDer1 is more accurate than dxNDer , but it restricts the kinds of functions that are valid in the expression)	
The value stored to δ affects dxNDer (Appendix).	dxNDer	(numeric differentiation) Uses nDer to differentiate numerically and calculate the value for an expression (dxNDer is less accurate than dxDer1 , but more kinds of functions are valid in the expression)	

2 The CATALOG, Variables, and Characters

The CATALOG	
Storing Data to Variables	
Classifying Variables as Data Types	
The CUSTOM Menu	
The CHAR (Character) Menu	45

The CATALOG [2nd] [CATLG-VARS] [F1]

The CATALOG displays all TI-86 functions and instructions in alphabetical order. Items that do not begin with a letter (such as + or **>Bin**) are at the end of the CATALOG.

The selection cursor (\blacktriangleright) indicates the current item. To select an item from the CATALOG, move the selection cursor to the item and press [ENTER]. The CATALOG disappears and the name is pasted to the previous cursor location.

Use vector or ▲ to move vector to an item	CATALOG abs and angle Ans ⊧arc(Asm(PAGE+ PAGE+ CUSTM BLANK	and press [ENTER] The item is pasted to the cursor location.	arc(
--	---	---	------

To jump	Do this:
To the first item beginning with a particular letter	Press the letter; ALPHA-lock is on
To special characters at the end of the CATALOG	Press 🛋 from the first CATALOG item
Down one whole screen	Select PAGE ↓ from the CATALOG menu (F1)
Up one whole screen	Select PAGE ↑ from the CATALOG menu (F2)

The menu items **CUSTM** and **BLANK** are on the CATALOG menu and each VARS screen menu. With them, you can create and edit your own CUSTOM menu of up to 15 CATALOG items and variables, including program names. For details about the CUSTOM menu, read page 44.

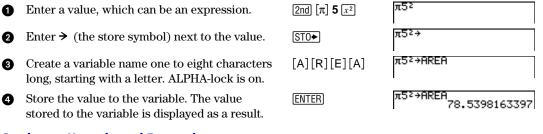
The CATALOG is the first item on the CATLG-VARS menu.

Storing Data to Variables

On the TI-86, data can be stored to variables in several ways. You can:

- Use **STO** to store a value to a variable.
- Use = to store an unevaluated expression to an equation variable.
- Use an editor's Name= prompt to store several types of data to a variable.
- Change TI-86 settings or reset defaults and memory to the factory settings.
- Execute functions that cause the TI-86 to store data automatically to built-in variables.

The TI-86 has built-in variable names with specific purposes, such as equation variables, list names, statistical result variables, window variables, and **Ans**. You can store values to some of them. They are introduced in the appropriate chapters of this guidebook.


Creating a Variable Name

You can create your own variable name when you use <u>STO</u>, =, or a Name= prompt to store data. When you create a user-created variable name, follow these guidelines.

- The user-created variable name can be from one to eight characters long.
- The first character must be a letter, which includes all CHAR GREEK menu items, as well as Ñ, ñ, Ç, and ç from the CHAR MISC menu.
- A user-created variable name cannot replicate a TI-86 feature symbol or built-in variable. For example, you cannot create **abs**, because **abs** is the absolute value function symbol. You cannot create **Ans**, because it is already a built-in variable name.
- The TI-86 distinguishes between uppercase and lowercase characters in variable names. For example, ANS, Ans, and ans are three different variable names. Therefore, only Ans is a built-in variable name; ANS and ans can be user-created variable names.

This chapter describes the first two data storage methods listed here. The other methods are described in the appropriate chapters. 0

Storing a Value to a Variable Name

Storing an Unevaluated Expression

When you store an expression to memory using $STO \rightarrow$ (with the \rightarrow sign), the expression is evaluated and the result is stored to a variable.

When you store an unevaluated expression using ALPHA [=], or the equation editor (Chapter 5), or the equation solver (Chapter 15), the unevaluated expression is stored to an equation variable.

To store an unevaluated expression on the home screen or in a program, the syntax is: variable=expression

where *variable* always precedes the equals sign and *expression* always follows the equals sign.

You can use = to store a mathematical expression to an equation variable. For example, F=M*A.

When you use =. variable is first, then =, then expression. In contrast, when you use \rightarrow . value is first, then \rightarrow , then variable.

Storing an Answer

a

Ø

To store an answer to a variable before you evaluate another expression, use **STO** and **Ans**.

In the example, the TI-86 multiplies the value stored to AREA times 3.3.

To paste AREA to the cursor location, you can press 2nd [CATLG-VARS] F3, move the selection cursor (▶) to AREA, and press ENTER.

To paste \Rightarrow to the cursor location, press STO \bullet .

To paste a variable name, you can select it from a VARS *menu (page 42).*

Enter and evaluate an expression.ALPHAALPHAALPHAALPHA[A] [R] [E] [A][ALPHA][ALPHA]259.181393921Store the answer to a user-created
variable or to a valid built-in variable.
The value stored to the variable is $STO \rightarrow [V] [O] [L]$ REA*3.3
(259.181393921AREA*3.3
(ALPHA)
(ALPHA) $STO \rightarrow [V] [O] [L]$ REA*3.3
(259.181393921

displayed as a result. Copying a Variable Value

To copy the contents of *variableA* into *variableB*, the syntax is: $variableA \Rightarrow variableB$

For example, RegEq>y1 stores the regression equation (Chapter 14) to the variable y1.

Displaying a Variable Value

With the cursor on a blank line on the home screen, paste the variable name to the cursor location, as described above.

2nd [CATLG-VARS] F3 (location may vary) ENTER	VOL	259.18139392
[ENTER]		

2 Display the contents of the variable.

You also can display variables containing some data types by displaying them in the appropriate editor (such as the list editor or window variable editor) or graph. These methods are detailed in subsequent chapters of this guidebook.

Recalling a Variable Value

- 2 Display the **Rcl** prompt at the bottom of [RCL] the screen. ALPHA-lock is on.
- 3 Enter the variable name you want to recall. [V] [O] [L]
- A Recall the variable contents to the cursor location. The Rcl prompt disappears and the entry cursor returns.

100*	
Rcl Ø	
Rcl VOL⊠	
100*259.181393921	

Classifying Variables as Data Types

The TI-86 classifies variables according to data type and places each variable on a data-type selection screen. You can display each screen by selecting the appropriate data type from the CATLG-VARS menu, as described on page 43. Here are some examples.

[ENTER]

If data	The TI-86 classifies the data type as	For example:
Begins with { and ends with }	A list (VARS LIST screen)	{1,2,3}
Begins with [and ends with]	A vector (VARS VECTR screen)	[1,2,3]
Begins with [[and ends with]]	A matrix (VARS MATRX screen)	[[1,2,3][4,5,6][7,8,9]]

To cancel RCL, press CLEAR.

Editing a recalled value does not change the value stored to the variable.

When you store data in an editor, the TI-86 recognizes the data type according to the editor. For example, only vectors are stored using the vector editor.

	The CATL	G-VARS	(CATALC)G-Variat	oles) Men	u	2nd [CATL	G-VARS]					
To display additional menu groups, press [MORE].	CATLG	ALL	REAL	CPLX	LIST	►	VECTR	MATRX	STRNG	EQU	CONS		
groups, press (MORE).						►	PRGM	GDB	PIC	STAT	WIND		
	CATLG	Displa	ys the CA [.]	TALOG									
	ALL	Displa	Displays a selection screen with all variables and names of all data types										
	REAL	Displays a selection screen with all real number variables											
	CPLX	Displa	ys a selec	tion scree	n with all o	comj	plex numb	er variabl	es				
The list names fStat, xStat,	LIST	Displays a selection screen with all list names											
and yStat are statistical result variables on the VARS STAT	VECTR	Displays a selection screen with all vector names											
screen.	MATRX	Displays a selection screen with all matrix names											
	STRNG	Displays a selection screen with all string variables											
	EQU	Displays a selection screen with all equation variables											
	CONS	Displays a selection screen with all user-defined constants											
	PRGM	Displa	ys a selec	tion screet	n with all j	orog	ram name	s					
	GDB	Displa	ys a selec	tion scree	n with all g	grapl	h database	e names					
	PIC	Displa	ys a selec	tion scree	n with all j	oictu	ire names						
	STAT	Displa	ys a selec	tion scree	n with all s	statis	stical resu	lt variable	s				
	WIND	Displa	ys a selec	tion scree	n with all v	wind	low variab	les					

The example assumes that the real-number variables **AREA** and **VOL** from the example on page 41 have not been deleted from memory.

Selecting a Variable Name

- Select the appropriate data-type selection screen from the CATLG-VARS menu.
- 2 Move the cursor to the variable you want to select.
- 3 Select the variable you want.

The CUSTOM Menu

[ENTER]

[2nd] [CATLG-VARS] [F3]

You can select up to 15 items from the CATALOG and VARS screens – program names, functions, instructions, and other items – to create your own CUSTOM menu. To display your CUSTOM menu, press [CUSTOM]. Use [F1] through [F5] and [MORE] to select items like any other menu.

◄

Entering CUSTOM Menu Items

- Select CUSTM from the CATALOG. The CUSTOM menu is displayed. ALPHA-lock is on.
- 2 Move the selection cursor (▶) to the item you want to copy to the CUSTOM menu.
- 3 Copy the item to the CUSTOM menu cell you select, replacing any previous item.
- To enter more items, repeat steps 2 and 3 using different items and cells.
- **5** Display the CUSTOM menu.

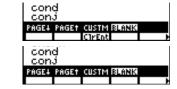
[2nd][QUIT] [CUSTOM]

When copying items into the CUSTOM menu, you can skip menu cells and menu groups.

Clearing CUSTOM Menu Items

- Select **BLANK** from the CATALOG menu. The [2nd] [CATLG-VARS] CUSTOM BLANK menu is displayed. [F1] [F4]
- Clear the menu item. ค
- To clear more items, repeat steps 2 and 3. ß

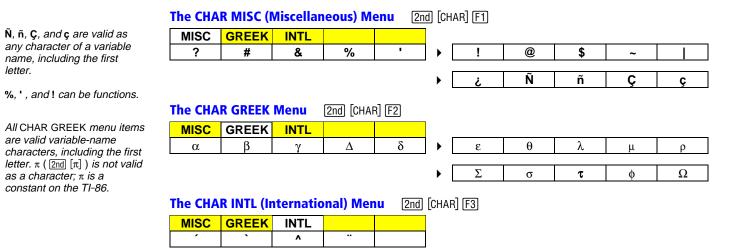
Deleting a Variable from Memory


From the home screen or in a program, to delete from memory one user-created variable name (except a program name) and its contents, the syntax is:

F3

DelVar(variable)

To delete user-created variable names and their contents (including program names), display the MEM DELET menu ([2nd] [MEM] [F2]), select the data type, select the variable, and then press [ENTER] (Chapter 16). Deleting a variable does not remove it from the CUSTOM menu (page 44).


The C	HA	2nd [CHAR]				
MISC	GRI	EEK	INTL			
 miscellane character menu ch	s	c ek	 internation haracters r enu			

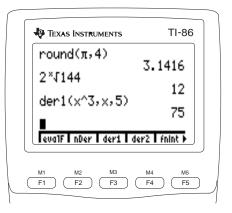
To clear an item from the second or third menu aroup. press MORE until the item is displayed, and then select it.

You cannot delete a TI-86 built-in variable.

You cannot delete a program variable using DelVar(.

You can combine modifiers on the CHAR INTL menu with uppercase or lowercase vowels to create vowels used in some languages. You can use these vowels in variable names and text.

[0]


Adding a Modifier to a Vowel

- Select the modifier from the CHAR INTL menu. ALPHA-lock is on. If necessary, switch to alpha-lock.
- 2 Enter the uppercase or lowercase vowel over which you want the modifier.

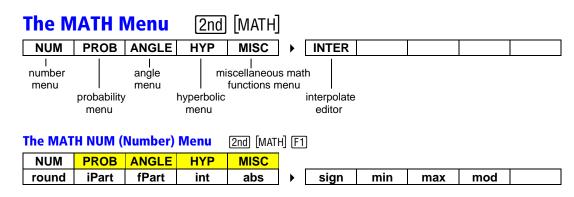
ö			
MISC	GREEK	INTL	
	· ·	~	

3 Math, Calculus, and Test Operations

Keyboard Mathematical Functions	. 48
The MATH Menu	49
The CALC (Calculus) Menu	. 54
The TEST (Relational) Menu	. 55

The A to Z Reference details which data types are valid arguments for each function.

The most common mathematical functions are on the TI-86 keyboard. For syntax, details, and examples of these functions, refer to the A to Z Reference.


x⁻¹ (the multiplicative inverse) is equivalent to the reciprocal, 1/x.

Keyboard Mathematical Functions

You can use these mathematical functions in expressions with real or complex values. You can use some of them with lists, vectors, matrices, or strings.

When you use lists, vectors, or matrices, the valid functions return a list of results calculated on an element-by-element basis. If you use two lists, vectors, or matrices in the same expression, they must be equal in dimension.

	Key	Function	Key	Function
	+	+ (add)	SIN	sin (sine)
ions are ard. For	-	- (subtract)	COS	cos (cosine)
l examples	×	* (multiply)	TAN	tan (tangent)
refer to ce.	÷	/ (divide)	2nd) [SIN-1]	sin ⁻¹ (arcsine; inverse of sine)
	(-)	- (negate)	[2nd] [COS-1]	\cos^{-1} (arccosine; inverse of cosine)
	x ²	² (square)	[2nd] [TAN-1]	tan ⁻¹ (arctangent; inverse of tangent)
	[2nd] [√_]	$\sqrt{(\text{square root})}$	LOG	log (logarithm)
ve inverse)	2nd [x-1]	⁻¹ (inverse)	LN	In (natural log)
	\frown	^ (raise to a specified power)	$[2nd] [e^x]$	\mathbf{e}^x (constant \mathbf{e} raised to a power)
	2nd [10 ^x]	10^ (10 to a specified power)	2nd [π]	π (constant pi; 3.1415926535898)
	EE	E (exponent)		

value can sometimes be an expression, list, vector, or matrix. For details about specific syntax options and examples, refer to the A to Z Reference.

round(value[,#ofDecimals])	Rounds value to 12 decimal places or to #ofDecimals
iPart value	Returns the integer part or parts of value
fPart value	Returns the fractional part or parts of value
int value	Returns the largest integer less than or equal to value
abs value	Returns the absolute value or magnitude of value
sign value	Returns 1 if <i>value</i> is positive; 0 if <i>value</i> is 0 ; -1 if <i>value</i> is negative
min(valueA,valueB)	Returns the smaller of <i>valueA</i> and <i>valueB</i>
min(list)	Returns the smallest element of <i>list</i>
max(valueA,valueB)	Returns the larger of <i>valueA</i> and <i>valueB</i>
max(list)	Returns the largest element of <i>list</i>
mod(numberA,numberB)	Returns numberA modulo numberB

	The MA1	H PROB	(Probabil	lity) Men	u [2nd] [MATH] F2				
	NUM	PROB	ANGLE	HYP	MISC						
	!	nPr	nCr	rand	randIn	►	randN	randBi			
! (factorial) is valid for non- integers.	value!]	Returns th	e factoria	l of a	real valu	e			
integers.	items nP	items nPr number			e number	ofp	ermutatio	ns of <i>item</i>	<i>s</i> (n) take	en <i>numbe</i>	r (r) at a
	items nC	r number		Returns the number of combinations of <i>items</i> (n) taken <i>number</i> (r) at a time							$r(\mathbf{r})$ at a
	rand			Returns a random number > 0 and < 1 ; to control a random number sequence, first store an integer seed value to rand (such as 0>rand)							
randInt, randNorm, and randBin are abbreviated in the MATH PROB menu.	randInt(lower,upper [,#ofTrials])			(random integer) Returns a random integer bound by the specified integers, $lower \le integer \le upper$; to return a list of random integers, specify an integer > 1 for $\#ofTrials$							
	randNorm(mean, stdDeviation [,#ofTrials])			(random normal) Returns a random real number from a normal distribution specified by <i>mean</i> and <i>stdDeviation</i> ; to return a list of random numbers, specify an integer > 1 for <i>#ofTrials</i>							
	randBin(#ofTrials, probabilityOfSuccess [,#ofSimulations])			(random binomial) Returns a random real number from a binomial distribution, where $\# ofTrials \ge 1$ and $0 \le probabilityOfSuccess \le 1$; to return a list of random numbers, specify an integer > 1 for $\# ofSimulations$							

The MAT	H ANGLE	Menu	2nd [MAT	ʻH] [F3]
NUM	PROB	ANGLE	HYP	MISC
0	r	-	►DMS	

angle°Overrides current angle mode setting to express angle in degreesangleIOverrides current angle mode setting to express angle in radiansdegrees'minutes'seconds'Designates an angle as degrees, minutes, and secondsangle>DMSDisplays angle in degrees°minutes'seconds" to enter a DMS angle

The MATH HYP (Hyperbolic) Menu 2nd [MATH] F4

sinh value	Returns the hyperbolic sine of value
cosh value	Returns the hyperbolic cosine of value
tanh value	Returns the hyperbolic tangent of value
sinh ⁻¹ value	Returns the hyperbolic arcsine of value
cosh ⁻¹ value	Returns the hyperbolic arccosine of value
tanh ⁻¹ value	Returns the hyperbolic arctangent of value

angle can be a list for °, ^r, and **▶DMS**.

In a calculation, the result of a degrees'minutes'seconds' entry is treated as degrees in **Degree** angle mode only. It is treated as radians in **Radian** angle mode.

value can sometimes be an expression, list, vector, or matrix. For details about specific syntax options and examples, refer to the A to Z Reference.

The MAT	H MISC (Miscellar	ieous) M	enu [2r	nd] [M	ATH] [F5]				
NUM	PROB	ANGLE	HYP	MISC						
sum	prod	seq	lcm	gcd	►	Frac	%	pEval	x $$	eval
sum list			Retu	irns the su	ım of	the elem	ents of <i>lis</i>	st		
prod list			Retu	irns the pi	oduc	ct of the e	lements o	f list		
	ession,var 1d[,step])	riable,						s the value and by step	1	ssion
lcm(value	A,valueB)	Retu	ırns the le	ast c	ommon n	ultiple of	<i>valueA</i> an	d valueB	
gcd(value	eA,valueB)	Retu	Returns the greatest common divisor of <i>valueA</i> and <i>valueB</i>						
value <mark></mark> ⊧Fra	С		Disp	lays value	e as a	fraction				
value%			Retu	ırns value	divid	led by 10) (multipli	ied by .01)		
percent%	number		Retu	irns <i>perce</i>	nt of	number				
pEval(coę́	fficientLi	ist,xValue)		rns the va ficientLis		1 0	omial (wł	nose coeffi	cients are	e given i
$x^{th}root^{\mathbf{x}}\sqrt{a}$	value		Retu	irns the x^i	^h root	t of value				
eval value	e							ted functio e indepeno		

The MATH MICC (Misselleneous) Menu

value can sometimes be an expression, list, vector, or matrix. For details about specific syntax options, refer to the A to Z Reference.

The Interpolate / Extrapolate Editor 2nd [MATH] MORE [F1]

Using the interpolate/extrapolate editor, you can interpolate or extrapolate a value linearly, given two known pairs and the x-value or y-value of the unknown pair.

,	0	Display the interpolate/extrapolate editor.	2nd [MATH] (MORE) (F1)	
hen	2	Enter real values for the first known pair $(x1,y1)$. The values can be expressions.	3 ENTER 5 ENTER	
	3	Enter values for the second known pair $(x2,y2)$.	4 ENTER 4 ENTER	
	4	Enter a value for either the x value or the y value of the unknown pair.	1 ENTER	INTERPOLATE
	5	If necessary, move the cursor to the value for which you want to solve (x or y).	▲ or ▼	91=5 ×2=4 92=4 ×=1
	6	Select SOLVE .	F 5	• G=7 SOLVE

The result is interpolated or extrapolated and displayed; the variables x and y are not changed. A solid square in the first column indicates the interpolated or extrapolated value.

After solving for a value, you can continue to use the interpolate/extrapolate editor.

To interpolate y from the home screen, select inter(from the CATALOG, and then enter inter(x1,y1,x2,y2,x).

To interpolate x from the home screen, enter inter(y1,x1,y2,x2,y).

You can store individual values with the STOP key (Chapter 2).

	The CALC (Calculus)	Menu [2nd] [CALC]						
You must set Dec mode to use the calculus functions.	evalF nDer der1 de	r2 fnInt FMin fMax arc						
	The calculus functions return values with respect to any user-created variable, to built-in variables eqn and exp, and to graphing variables such as x, t, and θ .							
	evalF(<i>expression,variable,value</i>) Returns the value of <i>expression</i> with respect to <i>variable</i> for a given variable <i>value</i>							
For evalF, nDer, der1, and der2, variable can be a real or complex number or list.	nDer(expression,variable [,value]) Returns an approximate numerical derivative of <i>expression</i> with respect to <i>variable</i> for the current variable value or specified variable <i>value</i>						
You can use der1 and der2 in expression. You can use nDer once in expression.	der1(expression,variable[,value])	Returns the value of the first derivative of <i>expression</i> with respect to <i>variable</i> for the current variable value or specified variable <i>value</i>						
nder once mexpression.	der2(expression,variable[,value])	Returns the value of the second derivative of <i>expression</i> with respect to <i>variable</i> for the current variable value or specified variable <i>value</i>						
For fnInt, fMin, and fMax, lower < upper must be true.	fnInt(expression,variable, lower,upper)	Returns the numerical integral of <i>expression</i> with respect to <i>variabl</i> between <i>lower</i> and <i>upper</i> boundaries						
	fMin(expression,variable, lower,upper)	Returns the minimum value of <i>expression</i> with respect to <i>variable</i> between <i>lower</i> and <i>upper</i> boundaries						
	fMax(expression,variable, lower,upper)	Returns the maximum value of <i>expression</i> with respect to <i>variable</i> between <i>lower</i> and <i>upper</i> boundaries						
	<pre>arc(expression,variable, start,end)</pre>	Returns the length of a segment of a curve defined by <i>expression</i> with respect to <i>variable</i> between <i>start</i> and <i>end</i>						

The built-in variable δ defines the step size in calculating **nDer**((in **dxNDer** differentiation mode only) and **arc(**. The built-in variable **tol** defines the tolerance in calculating fnInt(, fMin(, fMax(, and arc(. The value of each must be >0. These factors affect the accuracy of the calculations. As δ becomes smaller, the approximation typically is more accurate. For example, nDer(A^3.A.5) returns 75.0001 if δ =.01, but returns 75 if δ =.0001 (Appendix).

The function integral error value is stored to the variable fnIntErr (Appendix).

For **arc(** and **fnInt(** while **dxDer1** mode is set, these functions are not valid in *expression*: evalF(, der1(, der2(, fMin(, fMax(, nDer(, seq(, and any equation variable, such as y1.

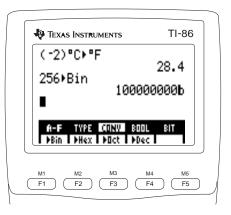
You can approximate the fourth derivative at the current value of x with this formula: nDer(nDer(der2(x^4,x),x),x).

The TEST (Relational) Menu					2	nd) [TE	ST]			
	= =	~	^	≤	≥		≠			1

for two length. valueB results o	Relational functions are valid for two lists of the same length. When valueA and	valueA==valueB	(equal to) Returns 1 if <i>valueA</i> is equal to <i>valueB</i> ; returns 0 if not equal; <i>valueA</i> and <i>valueB</i> can be real or complex numbers, lists, vectors, matrices, or strings
	<i>valueB</i> are lists, a list of results calculated element by	valueA <valueb< td=""><td>(less than) Returns 1 if <i>valueA</i> is less than <i>valueB</i>; returns 0 if <i>valueA</i> is not less than <i>valueB</i>; <i>valueA</i> and <i>valueB</i> must be real numbers or lists</td></valueb<>	(less than) Returns 1 if <i>valueA</i> is less than <i>valueB</i> ; returns 0 if <i>valueA</i> is not less than <i>valueB</i> ; <i>valueA</i> and <i>valueB</i> must be real numbers or lists
	element is returned.	valueA>valueB	(greater than) Returns 1 if <i>valueA</i> is greater than <i>valueB</i> ; returns 0 if <i>valueA</i> is not greater than <i>valueB</i> ; <i>valueA</i> and <i>valueB</i> must be real numbers or lists
		$valueA \leq valueB$	(less than or equal to) Returns 1 if <i>valueA</i> is less than or equal to <i>valueB</i> ; returns 0 if <i>valueA</i> is not less than or equal to <i>valueB</i> ; <i>valueA</i> and <i>valueB</i> must be real numbers or lists

valueA≥valueB	(greater than or equal to) Returns 1 if <i>valueA</i> is greater than or equal to <i>valueB</i> ; returns 0 if <i>valueA</i> is not greater than or equal to <i>valueB</i> ; <i>valueA</i> and <i>valueB</i> must be real numbers or lists
valueA≠valueB	(not equal to) Returns 1 if <i>valueA</i> is not equal to <i>valueB</i> ; returns 0 if <i>valueA</i> is equal to <i>valueB</i> ; <i>valueA</i> and <i>valueB</i> can be real or complex numbers, lists, vectors, matrices, or strings

Using Tests in Expressions and Instructions


You can use relational functions to control program flow (Chapter 16).

The TI-86 Evaluation Operating System (Appendix) performs all operations except Boolean operators before it performs relational functions. For example:

- The expression **2+2==2+3** evaluates to **0**. The TI-86 performs the addition first, and then compares 4 to 5.
- ◆ The expression 2+(2==2)+3 evaluates to 6. The TI-86 performs the test in parentheses first, and then adds 2, 1, and 3.

4 Constants, Conversions, Bases, and Complex Numbers

Using Built-In and User-Created Constants	58
Converting Units of Measure	61
Number Bases	65
Using Complex Numbers	70

Na

k

Сс

ec

Using Built-In and User-Created Constants

A constant is a variable with a specific value stored to it. The CONS BLTIN menu items are common constants built into the TI-86. You cannot edit the value of a built-in constant.

You can create your own constants and add them to the user-created constant menu for easy access. To enter a user-created constant, you must use the user-created constant editor (page 60); you cannot use $STO \rightarrow$ or = to create a constant.

The CON	S (Const	a <mark>nts)</mark> Mei	nu (2n	d] [CONS]		
BLTIN	EDIT	USER				
	nenu user-creat constants e					
The CONS BLTIN (Built-In Constants) Menu					[2nd] [CONS] [F1]	
BLTIN	EDIT	USER				

Gc

μ**0**

Me

h

q

£0

Mp

С

Mn

u

Rc

You can select built-in constants from the CONS BLTIN menu or enter them using the keyboard and the CHAR GREEK menu.

58

Built-In Constant	Constant Name	Constant Value
Na	Avogadro's number	6.0221367 E 23 mole ⁻¹
k	Boltzman's constant	1.380658 E -23 J/K
Cc	Coulomb constant	8.9875517873682E9 N m ² /C ²
ec	Electron charge	1.60217733 E -19 C
Rc	Gas constant	8.31451 J/mole K
Gc	Gravitational constant	6.67259E-11 N m ² /kg ²
g	Earth acceleration due to gravity	9.80665 m/sec^2
Ме	Mass of an electron	9.1093897 E -31 kg
Мр	Mass of a proton	1.6726231 E -27 kg
Mn	Mass of a neutron	1.6749286 E -27 kg
μ 0	Permeability of a vacuum	1.2566370614359 E -6 N/A ²
ε 0	Permittivity of a vacuum	8.8541878176204 E -12 F/m
h	Planck's constant	6.6260755 E -34 J sec
C	Speed of light in a vacuum	299,792,458 m/sec
u	Atomic mass unit	1.6605402 E -27 kg
π	Pi	3.1415926535898
e	Base of natural log	2.718281828459

To use π , press [2nd] [π] or
select it from the CATALOG.
To use $e^{, press}$ [2nd [e^{x}].
To use e, press [2nd [alpha] [E].

Creating or Redefining a User-Created Constant

- Display the CONS menu. a
- Display the constant editor. The Name= 0 prompt, Value= prompt, and CONS USER menu are displayed. ALPHA-lock is on.
- Enter a constant name. Either enter a new name ß one to eight characters long, starting with a letter, or select a name from the CONS USER menu. The cursor moves to the Value= prompt and the CONS EDIT menu is displayed (see below).
- 4 Enter the real or complex constant value, which can be an expression. The value is stored to the constant as you enter it. The user-created constant becomes a CONS USER menu item.

[2nd] [CONS]	BLTIN EDIT USER
F2	CONSTANT Name=© Value=
[A] [<u>2nd</u>] [alpha] [U] [ENTER]	CONSTANT Name=Au Value=196.9665
	PREV NEXT DELET

The Constant Editor Menu [2nd] [CONS] [F2] name [ENTER] or 🔽 PREV NEXT DELET

PREV Displays the name and value (if any) of the previous constant on the CONS USER menu

196 🗔 9665

- NEXT Displays the name and value (if any) of the next constant on the CONS USER menu
- **DELET** Deletes the name and value of the constant currently displayed in the constant editor

CONS USER menu items are the names of all stored usercreated constants. arranged alphanumerically.

60

196.9665 is the atomic weight of gold (Au).

You can enter a value later.

If you select **PREV** when the first constant name is displayed, or NEXT when the last constant name is displayed, the CONS USER menu replaces the CONS EDIT menu.

You also can delete a constant from the MEM DELET CONS screen.

Entering a Constant Name in an Expression

You can enter a constant in an expression in any of three ways.

- Select the constant name from the CONS BLTIN menu or the CONS USER menu.
- Select a user-created constant name from the VARS CONS screen.
- Use the ALPHA keys, alpha keys, and other character keys to enter a constant name.

Converting Units of Measure

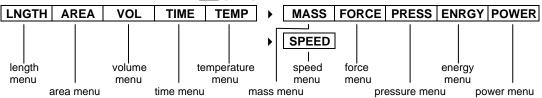
With the TI-86, you can convert a value measured in one unit into its equivalent value in another unit of measure. For example, you can convert inches to yards, quarts to liters, or degrees Fahrenheit to degrees Celsius.

The units of measure from which and to which you convert must be compatible. For example, you cannot convert inches to degrees Fahrenheit, or yards to calories. Each menu item on the CONV menu (page 62) represents a unit-of-measure group, such as length (LNGTH), volume (VOL), and pressure (PRESS). Within each menu, all units are compatible.

Converting a Unit of Measure

To use any conversion instruction, the syntax is: (value)currentUnit>newUnit

- Enter the real *value* to be converted.
- 2 Display the CONV menu.
- **3** Select the **TEMP** conversion group.


(() 2 ()	(-2)∎	-
[2nd] [CONV]		
F5		
		z

(-2)∎			
LNGTH AREA °C °F	VOL °K	TIME °B	TEMP

You can enter a conversion expression anywhere that an expression is valid.

In the example, -2 degrees Celsius is converted to degrees Fahrenheit. Always use parentheses when value is negative.

Important: When you convert a negative value, you must enclose in parentheses the value and its negation sign, as in (-4). Otherwise, the TI-86 order of evaluation will perform the conversion first, and then apply the negation to the converted value.

If you enter	The TI-86 converts it to
(⁻4)°C ኑ °F	24.8 degrees Fahrenheit (-4° Celsius converted to degrees Fahrenheit)
-4°C)°F	- 39.2 degrees Fahrenheit (4° Celsius converted to degrees Fahrenheit, then negated)

The	CONV LNGTH (Lengt	t <mark>h) Menu</mark> (2nd [CONV] F1				
mm	millimeters	yd	yards	mil	mils		
cm	centimeters	km	kilometers	Ang	Angstroms		
m	meters	mile	miles	fermi	fermis		
in	inches	nmile	nautical miles	rod	rods		
ft	feet	lt-yr	light-years	fath	fathoms		
The CONV AREA Menu [2nd] [CONV] [F2]							
ft²	square feet	km ²	square kilometer	rs cm²	square centimeters		
m²	square meters	acre	acres	yd²	square yards		
mi²	square miles	in²	square inches	ha	hectares		
liter gal qt pt oz	liters gallons quarts pints ounces	cm ³ in ³ ft ³ m ³ cup	cubic centimeter cubic inches cubic feet cubic meters cups	tbsp ml	teaspoons tablespoons milliliters UK gallons UK ounces		
The	CONV TIME Menu	[2nd] [CONV] [F4				
sec	seconds	day	days	ms	milliseconds		
mn	minutes	yr	years	μ S	microseconds		
hr	hours	week	weeks	ns	nanoseconds		
The	The CONV TEMP (Temperature) Menu [2nd] [CONV] [F5]						
°C	degrees Celsius °F	degrees Fa	hrenheit ° K de	egrees Kelvin	° R degrees Rankin		

The C	ONV MASS Menu	2nd	CONV]	MORE F1		
gm kg Ib	grams kilograms pounds	-	amu slug	atomic mass units slugs	ton mton	tons metric tons
The C	ONV FORCE Menu	2nd	[CONV]	MORE (F2)		
N dyne	Newtons dynes	-	tonf kgf	ton force kilogram force	lbf	pound force
The C	ONV PRESS (Pressu	re) Me	enu	[2nd] [CONV] [MORE] [F3]		
atm bar N∕ m²	atmospheres bars Newtons per square n	r	mmHg	pounds per square inch millimeters of mercury millimeters of water	inHg inH2O	inches of mercury inches of water
The C	ONV ENRGY (Energy	y) Mer	nu (2nd] [CONV] [MORE] [F4]		
J cal Btu	Joules calories British thermal units	ŀ	ft-lb kw-hr eV	foot-pounds kilowatt hours electron Volts	erg I-atm	ergs liter-atmospheres
The C	ONV POWER Menu	[2nd]	[conv] [MORE] [F5]		
hp W	horsepower Watts		tlb∕s al∕s	foot-pounds per second calories per second	Btu∕m	nBritish thermal units per minute
The C	ONV SPEED Menu	2nd	[CONV]	MORE MORE F1		
ft∕s m∕s	feet per second meters per second			miles per hour kilometers per hour	knot	knots

Converting a Value Expressed as a Rate

To convert a value expressed as a rate on the home screen, you can use parentheses and the division operator (/). For example, if a car travels 325 miles in 4 hours, and you want to know the rate of speed in kilometers per hour, enter this expression: (325/4)mi/hr*km/hr This expression returns 131 km/hr (rounded up).

You also can return this result using only a forward slash, as in: 325mile>km/4hr>hr

Number Bases

The number base mode setting (Chapter 1) controls how the TI-86 interprets an entered number and displays results on the home screen. However, you can enter numbers in any number base using number base designators **b**, **o**, **d**, and **h**. Then you can display the result on the home screen in any number base using number base conversions.

All numbers are stored internally as decimal. If you perform an operation in a mode setting other than **Dec**, the TI-86 performs integer mathematics, truncating to an integer after every calculation and expression.

For example, in Hex mode, 1/3+7 returns 7h (1 divided by 3, truncated to 0, and then added to 7).

To enter a forward slash (\land) , you can use the \vdots key or paste it from the CATALOG.

Number Base Ranges

Binary, octal, and hexadecimal numbers on the TI-86 are defined in these ranges.

Туре	Low Value / High Value	Decimal Equivalent
Binary	1000 0000 0000 0001 b 0111 1111 1111 1111 b	-32,767 32,767
Octal	5120 6357 4134 0001 0 2657 1420 3643 7777 0	-99,999,999,999,999 99,999,999,999,999
Hexadecimal	FFFF A50C EF85 C001h 0000 5AF3 107A 3FFFh	-99,999,999,999,999 99,999,999,999,999

One's and Two's Complements

To obtain the one's complement of a binary number, enter the **not** function (page 68) before the number. For example, **not 111100001111** in **Bin** mode returns **1111000011110000**b.

To obtain the two's complement of a binary number, press 🕞 before entering the number. For example, -111100001111 in Bin mode returns 1111000011110001b.

The (Number) BASE Menu					2	nd) [B	ASE]
A-F	TY	ΈE	CC	NV	BC	OL	BIT
	hexadecimal bas characters		se co me	nvers nu	ion		 rotate∕shift menu
menu	bas	e type		Bo	olear	n oper	ator
	me	enu			me	nu	

BASE A-F menu items and BASE TYPE menu items are not the same as regular alphabetical characters.

In the example, the upper menu is the list editor menu ([2nd [LIST] in **Dec** number base mode).

If **Hex** number base mode is not set, you must enter the **h** designator, even if the number contains a special hexadecimal character.

The BASE A-F (Hexadecimal Characters) Menu [BASE] [F1]

This is the BASE A-F menu displayed on the home screen. To use A, press 2nd [M1].

А	TYPE	CONV	BOOL	BIT
В	С	D	E	F

When an editor menu is the upper menu, A and B are combined in one cell. If you press F1 or MORE...

{	}	NAMES	"	OPS
A-B	С	D	E	F

...A and B move to two separate cells, and E and F are combined. To switch back, press [F5] or [MORE].

	{	}	NAMES	"	OPS
►	А	В	C	D	E-F

Entering Hexadecimal Digits

To enter a hexadecimal number, use the number keys as you would for a decimal number. Select the hexadecimal characters A through F from the menu as needed.

The BASE TYPE Menu [BASE] F2

A-F	TYPE	CONV	BOOL	BIT
b	h	0	d	

In an expression, you can designate a number in any number base, regardless of mode. After you enter the number, select the appropriate base type symbol from the BASE TYPE menu. The base type symbol is pasted to the cursor location. Here are some examples.

In Dec mode (default):	10b+10 Enter 10h+10 Enter	12 26	 10b+10 Enter 10d+10 Enter	120 220
In Bin mode:	10h+10 Enter 10d+10 Enter	10010b 1100b	 10b+10 Enter 10d+10 Enter	12h 1Ah

		-		-				
-FA	=	TYPE	CONV	BOOL	BIT			
▶Bi	n	▶Hex	▶Oct	▶Dec				
value	Bin	Display	ys <i>value</i> a	s binary		<i>value</i> →Oct	Displays	value as octal
value	Hex	Display	ys <i>value</i> a	s hexadec	eimal	value Dec	Displays	value as decimal
Conve	ertin	ng Numb	er Bases					
1 Ir	n Dec	: mode, s	olve 10 b +	• Fh + 10o	+ 10.			10b+Fh+10o+10 [
2 A	.dd 1	to the re	sult and c	onvert it t	o Bin num	ber base disp	play.	Ans+1>Bin ENTER
3 A	.dd 1	to the re	sult and c	onvert it t	o Hex nun	nber base dis	play.	Ans+1>Hex ENTER
4 A	.dd 1	to the re	sult and c	onvert it t	o Oct num	ıber base disj	play.	Ans+1>Oct ENTER
5 A	.dd 1	to the re	sult and c	onvert it t	o Dec nun	nber base dis	play.	Ans+1 ENTER

The BASE CONV (Conversion) Menu [2nd] [BASE] [F3]

value can be an expre list, vector, or matrix. detailed syntax descri refer to the A to Z Ref

68

The BASE BOOL ((Boolean) I	Menu	2nd [BASE] F4
-----------------	-------------	------	---------------

A-F	TYPE	CONV	BOOL	BIT
and	or	xor	not	

valueA and valueB valueA or valueB valueA **xor** valueB not *value*

35 [ENTER] 100100b R **25**h R **46**0 39

Results of Boolean Operations

Both the argument and the result must be within defined number ranges (page 66).

When a Boolean expression is evaluated, the arguments are converted to hexadecimal integers and the corresponding bits of the arguments are compared, as this table shows.

				Results	
If valueA is	and <i>valueB</i> is	and	or	xor	not (valueA)
1	1	1	1	0	0
1	0	0	1	1	0
0	1	0	1	1	1
0	0	0	0	0	1

The result is displayed according to the current mode setting. For example:

• In Bin mode, 101 and 110 returns 100b.

• In Hex mode, 5 and 6 returns 4h.

The BASE BIT Menu [2nd] [BASE] [F5]					
A-F	TYPE	CONV	BOOL	BIT	
rotR	rotL	shftR	shftL		

rotR value	Rotates value right
rotL value	Rotates value left
shftR value	Shifts value right
shftL value	Shifts value left

Rotate and shift operate on 16 base digits. To minimize an overflow error, enter the argument in binary form.

Using Complex Numbers

A complex number has two components: real (a) and imaginary (+bi). On the TI-86, you enter the complex number a+bi as:

• (*real,imaginary*) in rectangular form • (magnitude \angle angle) in polar form You can enter a complex number in rectangular or polar form, regardless of the current complex number mode setting. The separator (, or \angle) determines the form.

- To enter rectangular form, separate *real* and *imaginary* with a comma (,).
- To enter polar form, separate *magnitude* and *angle* with an angle symbol ($[2nd] [\angle]$).

Each component (*real, imaginary, magnitude*, or *angle*) can be a real number or an expression that evaluates to a real number; expressions are evaluated when you press ENTER.

When **RectC** complex number mode is set, complex numbers are displayed in rectangular form, regardless of the form in which you enter them (as shown to the right).

When **PolarC** complex number mode is set, complex numbers are displayed in polar form, regardless of the form in which you enter them (as shown to the right).

(6,1)	10.15
(621)	(6,1)
(6∠1) (3.2418138352	21,5.048

(6,1) (6.082762530 (6∠1)	32.16514
(621)	(621)

Complex Results

Complex numbers in results, including list, matrix, and vector elements, are displayed in the form (rectangular or polar) specified by the mode setting (Chapter 1) or by a display conversion instruction (page 61).

- ♦ When Radian angle mode is set, results are displayed as (*magnitude∠angle*).
- When Degree angle mode is set, results are displayed as (real, imaginary).

Variable names with complex numbers stored to them are listed on the VARS CPLX screen (Chapter 2).

70

Lists, matrices, and vectors can have complex elements.

The graph format settings **RectGC** and **PolarGC** (Chapter 5) determine the complex number form of graph screen coordinates.

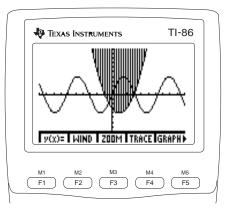
71

For example, when **PolarC** and **Degree** modes are set, $(2,1)-(1 \angle 45)$ returns $(1.32565429614 \angle 12.7643896828)$.

Using a Complex Number in an Expression

- Enter the complex number directly.
- Use the ALPHA keys, alpha keys, and other character keys to enter a complex variable.
- Select a complex variable from the VARS CPLX screen.

The CPLX (Complex Number) Menu 2nd [CPLX]


conj	real	imag	abs	angle	►	▶Rec	Pol				
conj (real,imaginary)			Returns the complex conjugate of a complex value, list, vector or matrix; the result is <i>(real,-imaginary)</i>								
conj (mag	mitude∠	angle)	Returns	(magnitu	de∠-a	ingle)					
real (real,imaginary)			Returns the real portion of a complex number, list, vector, or matrix as a real number; the result is <i>real</i>								
real (magnitude∠angle)		ungle)	Returns magnitude*cosine(angle)								
imag (real,imaginary)		Returns the imaginary (non-real) portion of a complex number, list, vector, or matrix as a real number; the result is <i>imaginary</i>									
imag (magnitude∠angle)			Returns magnitude*sine(angle)								
abs (real,imaginary)		(Absolute value) Returns the magnitude (modulus) of a complex number, list, vector, or matrix of complex numbers; the result is $\sqrt{(real^2+imaginary^2)}$									
abs (<i>mag</i>	nitude∠o	ingle)	Returns	magnitud	e						

You can enter the name or a complex list, vector, or matrix as an argument for any CPLX menu item.

	angle (real,imaginary)	Returns the polar angle of a complex number, list, vector, or matrix calculated as tan⁻¹ (<i>imaginary/real</i>) (adjusted by π in the second quadrant or π in the third quadrant); the result is tan ⁻¹ (<i>imaginary/real</i>)					
	angle (<i>magnitude∠angle</i>)	Returns <i>angle</i> (where $-\pi < angle \le \pi$)					
Select { and } from the LIST menu. You must enter commas to separate list elements.	complexValue>Rec	Displays <i>complexValue</i> in rectangular format <i>(real,imaginary)</i> , regardless of complex mode setting; valid only at the end of a command and only when <i>complexValue</i> is indeed complex					
	complexValue ▶Pol	Displays <i>complexValue</i> in polar format (<i>magnitude</i> \angle <i>angle</i>), regardless of complex mode setting; valid only at the end of a command and only when <i>complexValue</i> is indeed complex					
	You can enter a complex list, vector, or matrix directly. The syntax below is for lists. To enter a complex vector or matrix, substitute brackets for braces below and use the correct form for either data type (Chapters 12 and 13).						
	In rectangular form, to use lists of complex numbers with conj , real , imag , abs , and angle , the syntax is: conj{ (<i>realA</i> , <i>imaginaryA</i>),(<i>realB</i> , <i>imaginaryB</i>),(<i>realC</i> , <i>imaginaryC</i>),}						
	In polar form, to use lists of complex numbers with conj , real , imag , abs , and angle , the syntax is: real{($magnitudeA \angle angleA$),($magnitudeB \angle angleB$),($magnitudeC \angle angleC$),}						
	When you use a list the T	I-86 calculates the result element by element and returns a list, in pressed according to the complex mode setting.					

5 Function Graphing

Defining a Graph	74
Setting the Graph Mode	74
The GRAPH Menu	75
Using the Equation Editor	76
Setting the Window Variables	81
Setting the Graph Format	83
Displaying a Graph	

Some of these steps are not

necessary every time you

define a graph.

Defining a Graph

This chapter describes the process for graphing functions in **Func** graphing mode, but the process is similar for each TI-86 graphing mode. Chapters 8, 9, and 10 describe the unique aspects of polar, parametric, and differential equation graphing modes. Chapter 6 describes various graphing tools, many of which you can use in all graphing modes.

- Set the graphing mode (page 74).
- 2 Define, edit, or select one or more functions in the equation editor (pages 76 and 77).
- **3** Select the graph style for each function (page 79).
- Deselect stat plots, if necessary (page 81).
- **5** Set the viewing window variables (page 81).
- 6 Select the graph format settings (page 83).

Setting the Graph Mode

To display the mode screen, press 2nd [MODE]. All default mode settings, including **Func** graphing mode, are highlighted in the picture to the right. The graphing modes are on the fifth line.

- **Func** (function graphing)
- **Pol** (polar graphing; Chapter 8)
- **Param** (parametric graphing; Chapter 9)
- **DifEq** (differential equation graphing; Chapter 10)

	Each graphing mode has a unique equation editor. You must select the graphing mode and Dec number base mode before you enter the functions. The TI-86 retains in memory all equations stored to the Func , Pol , Param , and DifEq equation editors. Each mode also has unique graph format settings and window variables.
	Stat plot on/off status, zoom factors, mode settings, and tolerance apply to all graphing modes; changing the graphing mode does not affect them.
Chapter 1 describes all mode settings in detail.	These mode settings affect graphing results.
seungs in detall.	• Radian or Degree angle mode affects the interpretation of some functions.

Chapter 6 describes these GRAPH menu items: ZOOM, TRACE, MATH, DRAW, STGDB, RCGDB, EVAL, STPIC, and RCPIC. • dxDer1 or dxNDer differentiation mode affects plotting of selected functions.

The G	RAPH	Menu	GR	APH						
y(x)=	WIND	ZOOM	TRACE	GRAPH	►	MATH	DRAW	FORMT	STGDB	RCGDB
					•	EVAL	STPIC	RCPIC		

y(x)=	Displays the equation editor; use this screen to enter functions to be graphed
WIND	Displays the window editor; use this editor to change graph screen dimensions
ZOOM	Displays the GRAPH ZOOM menu; use these items to change the graph screen dimensions
TRACE	Activates the trace cursor; use this cursor to trace along the graph of a specific function
GRAPH	Displays the graph screen; graphs all selected functions and turned on stat plots
MATH	Displays the GRAPH MATH menu; use this menu to explore graphs mathematically
DRAW	Displays the GRAPH DRAW menu; use this menu to draw on graphs or test pixels

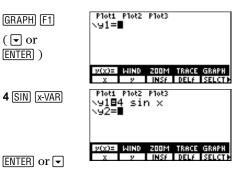
FORMT	Displays the graph format screen; use this screen to select graph format settings
STGDB	Displays the Name= prompt and STGDB menu; use this prompt to enter a GDB variable
RCGDB	Displays the Name= prompt and RCGDB menu; use this menu to recall a graph database
EVAL	Displays the $Eval\ x{=}\ \mathrm{prompt};$ enter an x for which you want to solve the current function
STPIC	Displays the Name= prompt and STPIC menu; use this prompt to enter a PIC variable
RCPIC	Displays the Name= prompt and RCPIC menu; use this menu to recall a picture

Using the Equation Editor

To display the equation editor in **Func** graphing mode, select **y(x)=** from the GRAPH menu (<u>GRAPH</u> [F1]). The GRAPH menu shifts up and the equation editor menu is displayed as the lower menu. You can store up to 99 functions in the equation editor, if sufficient memory is available.

Plot1 Plot2 \y1=∎	Plot3
V(X)= WIND	200M TRACE GRAPH

If a function is selected, its equals sign (=) is highlighted in the equation editor. If the function is deselected, its equals sign is not highlighted. Only selected functions are plotted when the TI-86 plots a graph.


The Equation Editor (GRAPH y(x)=) Menu					GRA	PH F1			
y(x)=	WIND	ZOOM	TRACE	GRAPH					
X	у	INSf	DELf	SELCT	•	ALL+	ALL-	STYLE	

x Pastes the variable x to the current cursor location (sa	ame as x-VAR or 2nd [alpha] [X])
--	----------------------------------

- y Pastes the variable y to the current cursor location (same as 2nd [alpha] [Y])
- **INSf** Inserts a deleted equation variable (function) name above the current cursor location (only the variable name is inserted)
- **DELf** Deletes the function that the cursor is on
- **SELCT** Changes the selection status of the function that the cursor is on (selects or deselects)
- ALL+ Selects all defined functions in the equation editor
- ALL- Deselects all defined functions in the equation editor
- **STYLE** Assigns the next of seven available graph styles to the function that the cursor is on

Defining a Function in the Equation Editor

- **1** Display the equation editor.
- If functions are stored in the equation editor, move the cursor down until a blank function is displayed.
- Enter an equation in terms of x to define the function. When you enter the first character, the function is selected automatically. (The function's equals sign is highlighted.)
- 4 Move the cursor to the next function.

To move from the first equation editor function to the last, press .

To move to the beginning or end of an equation, press 2nd • or 2nd •.

An ellipsis indicates that an equation continues beyond the screen.

Notes about Defining Function Equations

- You can include functions, variables, constants, matrices, matrix elements, vectors, vector elements, lists, list elements, complex values, or other equations in the equation.
- If you include matrices, vectors, or complex values, the equation must evaluate to a real number at each point.
- You can include another defined function in an equation. For example, given y1=sin x and y2=4+y1, the function y2 would equal 4 plus the sine of x.
- To enter a function name, select **y** from the equation editor menu, and then enter the appropriate number.
- To insert the contents of an equation variable, use RCL (Chapter 1). To enter the equation variable at the Rcl prompt, use the ALPHA keys, alpha keys, and other character keys.
- To select all functions from the home screen or in the program editor, select **FnOn** from the CATALOG (or enter the individual characters) and press **ENTER**.
- To select specific functions from the home screen or in the program editor, select **FnOn** from the CATALOG (or enter the individual characters), enter the number of each function, and press ENTER. For example, to select **y1**, **y3**, and **y5**, enter **FnOn 1,3,5**.
- To deselect functions from the home screen or in the program editor, use **FnOff** the same way you use **FnOn** to select functions.
- When a function evaluates to a non-real number, the value is not plotted on the graph; no error is returned.

You can edit expressions you inserted using **Rcl**.

Selecting Graph Styles

Depending on which graphing mode is set, the TI-86 offers up to seven distinct graph styles. You can assign these styles to specific functions to visually differentiate each from the others.

For example, you can show y1 as a connected line (**\y1=** in the equation editor) and y2 as a dotted line (**\.y2=**), and shade the area above y3 (**\\y3=**).

Also, you can manipulate the styles to illustrate actual phenomena graphically, such as a ball flying through the air (using #) or the circular movement of a chair on a Ferris wheel (using #).

lcon	Style	Characteristics of the Plotted Function
\	Line	A solid line connects each plotted point; this is the default in Connected mode
Ŋ	Thick	A thick solid line connects each plotted point
	Above	Shades the area above the function
	Below	Shades the area below the function
÷	Path	A circle cursor traces the leading edge of the function and draws a path as it plots
0	Animate	A circle cursor traces the leading edge of the function as it plots; does not draw a path
•.	Dot	A small dot represents each plotted point; this is the default in Dot mode

To set the graph style from a program, select GrStI(from the CATALOG (A to Z Reference).

The TI-86 graphs all selected functions on the same graph screen.

 (shade above) and
 (shade below) are available only in Func graphing mode.

. (dot) is available in all graphing modes except **DifEq** graphing mode.

In the example, T (shade above) is selected for v2. All window variables are set to the default values (page 82).

Setting the Graph Style in the Equation Editor

- Display the equation editor.
- Move the cursor to the function or functions for Ø which you want to set the graph style.
- Display the equation editor menu item **STYLE**. ß
- Select **STYLE** repeatedly to scroll the graph 4 style icons to the left of the equation name.
- View the graph with the new graph style.
- Clear the GRAPH menu to view the graph only.

GRAPH (F1)	Plots Plots Vy180sin X Vy20x2-2x-3
More F3 F3	Ploti Plot2 Plot3 \y184sin x ¶y28∎²-2x-3
	V(X)= WIND 200M TRACE GRAPH All+ All- Style
2nd (F5)	
CLEAR	

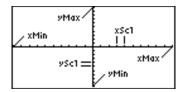
Using Shading Patterns to Differentiate Functions

When you select (shade above) or (shade below) for more than one function, the TI-86 rotates through a series of four shading patterns.

- First shaded function: vertical lines
- Second shaded function: horizontal lines ٠
- Third shaded function: negatively sloping diagonal lines ٠
- Fourth shaded function: positively sloping diagonal lines

The rotation returns to vertical lines for the fifth shaded function and repeats the order.

If you assign T or L to a function that graphs a family of curves (page 86), the same pattern rotation applies to the members of the family of curves.


Viewing and Changing On/Off Status of Stat Plots

Plot1 Plot2 Plot3 on the top line of the equation editor displays the on/off status of each stat plot (Chapter 14). When a plot name is highlighted on this line, the plot is on.

To change the on/off status of a stat plot from the equation editor, press \blacktriangle , \triangleright , and \checkmark to place the cursor on Plot1, Plot2, or Plot3, and then press ENTER.

Setting the Window Variables

The graph screen window represents the portion of the coordinate plane displayed on the graph screen. By setting window variables, you can define the graph screen window boundaries and other attributes.

xMin, xMax, yMin, and yMax are the graph screen boundaries.

xScl (x scale) is the number of units represented by the distance from one tick mark to the next tick mark on the x-axis.

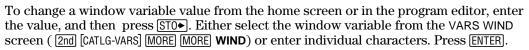
ySci (y scale) is the number of units represented by the distance from one tick mark to the next tick mark on the y-axis.

xRes sets pixel resolution for function graphs only, using integers 1 through 8.

- At **xRes=1** (the default), functions are evaluated and graphed at each pixel on the x-axis.
- At **xRes=8**, functions are evaluated and graphed at every eighth pixel along the x-axis.

To remove tick marks from both axes, set **xScI=0** and **yScI=0**.

Small **xRes** values improve graph resolution but may cause the TI-86 to plot graphs more slowly.


Displaying the Window Editor

To display the window editor, select **WIND** from the GRAPH menu (GRAPH [F2]). Each graphing mode has a unique window editor. The window editor to the right shows the default values in **Func** graphing mode. \downarrow indicates that **xRes=1** (x resolution) is below **yScI** on the window editor.

LITNOLI
×Min=-10
UM-U-10
×Max=10
∨Sc1=1
AB01-1
yMin=-10
9Max=10
↓9Scl=1
Ψ9501-1
V(x)= WIND ZOOM TRACE GRAPH
2007= MIND 200M TRACE GRAPH

Changing a Window Variable Value

- Display the window editor. Move the cursor to the window variable you Ø want to change.
- Edit the value, which can be an expression. Ø
- Evaluate any expressions and store the value. ENTER or -4

GRAPH [F2]

 $\overline{}$

0

IINDOL Min=-10 ах=10 WIND ZOOM TRACE GRAPH N

xMin<xMax and yMin<yMax both must be true to graph successfully.

In the example, **yMin** is changed to 0.

Setting Graphing Accuracy with Δx and Δy

The window variables Δx and Δy define the distance from the center of one pixel to the center of any adjacent pixel. When you display a graph, the values of Δx and Δy are calculated from xMin, xMax, yMin, and yMax using these formulas:

 $\Delta x = (xMin + xMax)/126$

 $\Delta y = (yMin + yMax)/62$

 Δx and Δy are not on the window editor. To change them, you must follow the steps above for changing a window variable value from the home screen or in the program editor. When you change the values stored to Δx and Δy , the TI-86 automatically recalculates **xMax** and **yMax** from Δx , **xMin**, Δy , and **yMin**, and the new values are stored.

Setting the Graph Format

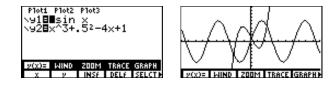
To display the graph format screen, select **FORMT** from the GRAPH menu (<u>GRAPH</u> <u>MORE</u> <u>F3</u>). The graph format settings define various characteristics of the displayed graph. The current settings are highlighted.

To change a setting, move the cursor onto the new setting, and then press ENTER, the same as on the mode screen.

The TI-86 retains independent format settings for each graphing mode.

In **DifEq** graphing mode, the graph format screen key sequence is <u>GRAPH</u> MORE F1 (Chapter 10).

DifEq graphing mode has a unique set of graph format settings (Chapter 10).	RectGC	Displays the cursor location as rectangular graph coordinates x and y ; when RectGC is set, plotting the graph, moving the free-moving cursor, and tracing update x and y ; if CoordOn format also is selected, x and y are displayed
	PolarGC	Displays the cursor location as polar graph coordinates R and θ ; when PolarGC is set, plotting the graph, moving the free-moving cursor, and tracing update x , y , R and θ ; if CoordOn format also is selected, R and θ are displayed
	CoordOn	Displays the cursor coordinates at the bottom of the graph
	CoordOff	Does not display the cursor coordinates at the bottom of the graph
	DrawLine	Draws a line between the points calculated for the functions in the equation editor
	DrawDot SeqG	Plots only the calculated points for the functions in the equation editor (sequential graphing) Evaluates and plots one function completely before evaluating and plotting the next function
	SimulG	(simultaneous graphing) Evaluates and plots all selected functions for a single value of \mathbf{x} and then evaluates and plots them for the next value of \mathbf{x}
Grid points cover the graph	GridOff	Omits the grid points from the display
screen in rows that correspond to the tick marks	GridOn	Displays grid points
on each axis.	AxesOn	Displays the axes
	AxesOff	Omits the axes from the display; $\ensuremath{AxesOff}$ overrides the $\ensuremath{LabelOff}/\ensuremath{LabelOn}$ format setting
	LabelOff	Omits the axis labels from the display
	LabelOn	Labels the axes, if AxesOn is also selected; x and y for Func , Pol , and Param modes; various labels in DifEq mode


In the example graph to the right, all default settings related to graphing are set.

To view the graph without the GRAPH menu on the bottom line, press [CLEAR] after plotting the graph.

When you pause, the busy indicator in the top-right corner becomes a dotted line.

Displaying a Graph

To display a graph, select **GRAPH** from the GRAPH menu. The graph screen is displayed. If the graph is newly defined, the busy indicator is displayed at the top-right corner as the TI-86 draws the graph.

- In SeqG format, the TI-86 draws each selected function one by one, in function-name order (for example, y1 is graphed first, y2 is graphed second, and so on).
- In SimulG format, the TI-86 draws all selected graphs simultaneously.

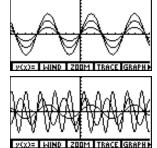
You can display and explore a graph from a program (Chapter 16). To use graphing commands on the home screen, select them from the CATALOG or entering the individual characters.

Pausing or Stopping a Graph in Progress

- To pause graph plotting, press ENTER. To resume plotting, press ENTER again.
- To stop graph plotting, press ON. To replot, select **GRAPH** from the GRAPH menu.

Modifying a Drawn Graph

To remove these items from the graph screen:	Press (or select):
Cursor, coordinate values, or menus (To restore menus, press EXIT) or GRAPH)	(CLEAR)
Free-moving cursor and coordinate values but not the menus	(ENTER)
Cursor and coordinate values but not the menus	GRAPH or GRAPH

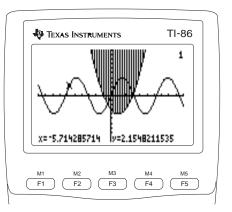

Graphing a Family of Curves

If you enter a list as an element in an equation, the TI-86 plots the function for each value in the list, graphing a family of curves. In SimulG graphing order mode, the TI-86 graphs all functions sequentially for the first element in each list, then for the second element, and so on.

When you use more than one For example, {2,4,6} sin x graphs three functions: $2 \sin x$, $4 \sin x$, and $6 \sin x$.

> The equation {2,4,6} sin ({1,2,3} x) also graphs three functions: 2 sin x, 4 sin (2x), and 6 sin (3x).

Smart Graph


Smart Graph displays the previously displayed graph when you press [GRAPH], as long as all factors that would cause replotting are unchanged since the graph was last displayed. Smart Graph replots if you performed any of these actions since the graph was last displayed.

- Changed a mode setting that affects graphs
- Changed a function or stat plot that was plotted on the last graph screen
- Selected or deselected a function or stat plot
- Changed the value of a variable in a selected function
- Changed the value of a window variable setting
- Changed a graph format setting

list in an expression. all lists must have the same dimension.

Graph Tools

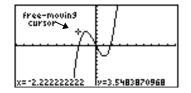
Graph Tools on the TI-86	88
Tracing a Graph	
Resizing the Graph Screen with ZOOM Operations .	
Using Interactive Math Functions	
Evaluating a Function for a Specified x	101
Drawing on a Graph	101

Graph Tools on the TI-86

Chapter 5 describes how to use the GRAPH menu items **y**(**x**)**=**, **WIND**, **GRAPH**, and **FORMT** to define and display the graph of a function in **Func** graphing mode. This chapter describes how to use the other GRAPH menu items to apply preset graph screen dimensions, explore the graph and trace specific functions, perform mathematical analyses, draw on graphs, and store and recall graphs and drawings. You can use most graph tools in all four graphing modes.

The GRAPH Menu GRAPH

This is the GRAPH menu in Func graphing mode. The GRAPH menu differs slightly from graphing mode to graphing mode.


y(x)= WIND ZOOM TRACE GRAPH → MATH DRAW FORMT STGDB RCGDB

- EVAL STPIC RCPIC
- **ZOOM** Displays the GRAPH ZOOM menu; use these items to apply preset graph screen dimensions
- **TRACE** Activates the trace cursor; use this cursor to trace along graphs of specific functions
- **MATH** Displays the GRAPH MATH menu; use this menu to explore graphs mathematically
- **DRAW** Displays the GRAPH DRAW menu; use this menu to draw on graphs
- **STGDB** Displays the **Name=** prompt and GDB menu; use this prompt to enter a **GDB** variable
- **RCGDB** Displays the **Name=** prompt and GDB menu; use this menu to recall a **GDB** variable
- **EVAL** Displays the **Eval x=** prompt; use this prompt to enter an **x** value for which you want to solve the current function
- **STPIC** Displays the **Name=** prompt and PIC menu; use this prompt to enter a **PIC** variable
- **RCPIC** Displays the **Name=** prompt and PIC menu; use this menu to recall **PIC** variable

Using the Free-Moving Cursor

When you select **GRAPH** from the GRAPH menu, the graph screen is displayed with the free-moving cursor at the center of the screen.

The cursor appears as a plus sign with a flashing center pixel. To move the cursor, press \triangleright , \checkmark , \triangleleft , or \triangleleft ; it moves in the direction of the cursor key you press.

- In RectGC format, each cursor movement updates the variables x and y. In PolarGC format, each cursor movement updates x, y, R, and θ.
- In **CoordOn** format, the **x** and **y** cursor coordinates are displayed at the bottom of the graph screen as you move the cursor.

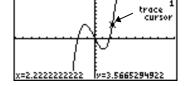
Graphing Accuracy

The coordinate values displayed as you move the cursor approximate actual mathematical coordinates, accurate to within the width and height of the pixel. As the difference between **xMin** and **xMax** and between **yMin** and **yMax** becomes smaller (for example, when you zoom in on a graph), graphing is more accurate and coordinate values approximate the actual mathematical coordinates more closely.

The free-moving cursor coordinates represent the cursor location on the graph screen. Moving the free-moving cursor precisely from one plotted point to the next along a function is very difficult. To move along a function easily, use the trace cursor (page 90).

In the example, the function y(x)=x^3+.3x²-4x is graphed.

The numeric display mode settings do not affect coordinate display.


Tracing a Graph

To display the graph and begin a trace, select **TRACE** from the GRAPH menu.

In the example, the function y(x)=x^3+.3x²-4x is graphed.

When you enter the first character of an independent variable value, an x= prompt is displayed (or $\theta=$ or t=). The value can be an expression.

If the function is undefined at an **x** value, then the **y** value is blank. The trace cursor appears as a small square with a flashing diagonal line at each corner. Initially, the trace cursor appears on the first selected function, at the x value closest to the middle of the screen.

If **CoordOn** format is selected, the cursor coordinates are displayed at the bottom of the screen.

To move the trace cursor	Press these keys:
To the next larger or next smaller plotted point in a function	▶ or ◀
To any valid independent-variable value $(\boldsymbol{x},\boldsymbol{\theta},$ or $\boldsymbol{t})$ on the current equation	n <i>value</i> [ENTER]
From one function to another function at \mathbf{x} , in the order or reverse order of the selected functions in the equation editor	of vor A
From one member to another member of a family of curves (Chapter 5)	▼ or ▲

As you move the trace cursor along a function, the y value is calculated from the x value. That is, y=yn(x). When you trace beyond the top or bottom of the graph screen, the coordinates displayed on the screen continue to change as if the cursor were still on the screen.

Panning: To view function coordinates to the left or right of the current graph screen, press and hold () or) while tracing. When you pan beyond the left or right side of the screen during a trace, the TI-86 automatically changes the values of **xMin** and **xMax**.

Quick Zoom: While tracing, you can press **ENTER** to adjust the graph screen so that the trace cursor location becomes the center of a new graph screen, even if you have moved the cursor beyond the top or bottom of the display. In effect, this is vertical panning.

Stopping and Resuming a Trace

To stop tracing and restore the free-moving cursor, press CLEAR or GRAPH.

To resume tracing, select **TRACE** from the GRAPH menu. If Smart Graph has not replotted the graph (Chapter 5), the trace cursor is at the point where you stopped tracing.

Resizing the Graph Screen with ZOOM Operations

The standard TI-86 graph screen displays the portion of the xy plane defined by the values stored to the window variables. With the GRAPH ZOOM menu items, you can change some or all of the window variable values and redisplay the graph, usually with one keystroke. As a result, a smaller or larger portion of the xy plane is displayed.

The GRA	PH ZOON	OM Menu GRAPH F3								
y(x)=	WIND	ZOOM	TRACE	GRAPH						
BOX	ZIN	ZOUT	ZSTD	ZPREV	►	ZFIT	ZSQR	ZTRIG	ZDECM	ZDATA
0										
					•	ZRCL	ZFACT	ZOOMX	ZOOMY	ZINT

▶ ZSTO

To view the current window variable values, select **WIND** from the GRAPH menu.

To cancel the effect of any	вох	Draws a box to define the graph screen				
ZOOM menu item and return to the default window variable	ZIN	(zoom in) Magnifies the graph around the cursor by factors of xFact and yFact				
values, select ZSTD.	ZOUT	(zoom out) Displays more of the graph around the cursor by factors of xFact and yFact				
	ZSTD	Displays the graph in standard dimensions; resets the default window variable values				
	ZPREV	Reverses the last zoom operation; window variables revert to previous values				
	ZFIT	Recalculates yMin and yMax to include the minimum and maximum y values of the selected functions between the current xMin and xMax				
If you graph a circle but it appears elliptical, you can use ZSQR to reset the window variable values so that the circle graph appears circular.	ZSQR	Sets equal-size pixels on the x-axis and y-axis; adjusts window variable values in one direction so that $\Delta x = \Delta y$, while xScl and yScl remain unchanged; the midpoint of the current graph (not the axes intersection) becomes the midpoint of the new graph				
	ZTRIG	Sets built-in window variables appropriate for trigonometric functions in Radian mode:xMin=-8.24668071567xScl=1.5707963267949 (π /2)yMax=4				
		xMax=8.24668071567				
		XWax=0.240000/1007 ywwi= 4 you=1				
	ZDECM	Sets $\Delta x=.1$, $\Delta y=.1$, xMin=-6.3, xMax=6.3, xScl=1, yMin=-3.1, yMax=3.1, and yScl=1				
	ZDECM ZDATA					
		Sets $\Delta x=.1$, $\Delta y=.1$, xMin=-6.3, xMax=6.3, xScl=1, yMin=-3.1, yMax=3.1, and yScl=1 Sets window variable values to display all statistical data points; adjusts xMin and xMax				
	ZDATA	Sets $\Delta x=.1$, $\Delta y=.1$, $xMin=-6.3$, $xMax=6.3$, $xScl=1$, $yMin=-3.1$, $yMax=3.1$, and $yScl=1$ Sets window variable values to display all statistical data points; adjusts $xMin$ and $xMax$ only; applies to histograms, scatter plots, and stat plots only (Chapter 14)				
	ZDATA	Sets Δ x=.1 , Δ y=.1 , xMin=-6.3 , xMax=6.3 , xScl=1 , yMin=-3.1 , yMax=3.1 , and yScl=1 Sets window variable values to display all statistical data points; adjusts xMin and xMax only; applies to histograms, scatter plots, and stat plots only (Chapter 14) Uses window variable values stored in the user-defined zoom-window variables (ZSTO)				
	ZDATA ZRCL ZFACT	Sets Δ x=.1 , Δ y=.1 , xMin=-6.3 , xMax=6.3 , xScl=1 , yMin=-3.1 , yMax=3.1 , and yScl=1 Sets window variable values to display all statistical data points; adjusts xMin and xMax only; applies to histograms, scatter plots, and stat plots only (Chapter 14) Uses window variable values stored in the user-defined zoom-window variables (ZSTO) Displays the ZOOM FACTORS screen				
	ZDATA ZRCL ZFACT ZOOMX	Sets Δ x=.1 , Δ y=.1 , xMin=-6.3 , xMax=6.3 , xScl=1 , yMin=-3.1 , yMax=3.1 , and yScl=1 Sets window variable values to display all statistical data points; adjusts xMin and xMax only; applies to histograms, scatter plots, and stat plots only (Chapter 14) Uses window variable values stored in the user-defined zoom-window variables (ZSTO) Displays the ZOOM FACTORS screen Zooms out by a factor of xFact only; ignores yFact (page 93)				

Defining a Custom Zoom In

Using **BOX**, you can zoom in on any rectangular area within the current graph screen.

- Select **BOX** from the GRAPH ZOOM menu. The zoom cursor is displayed at center screen.
 - Move the cursor to any spot you want to define as a corner of the zoom box; mark the corner with a small square.
 - Move the cursor away from the first corner, creating an adjustable box whose diagonal corners are the small square and the cursor.
 - When you have defined the box, replot all selected functions in the new graph screen.
 - **5** Clear the menus from the screen.

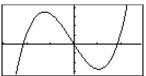
Setting Zoom Factors

Zoom factors define the magnification or reduction factor by which ZIN, ZOUT, ZOOMX, and ZOOMY zoom in or zoom out around a point. To display the zoom factors editor, select ZFACT from the GRAPH ZOOM menu (press GRAPH F3 MORE MORE F2). xFact and yFact must be ≥ 1 . The default value for both factors is **4** in all graphing modes.

Zooming In and Zooming Out on a Graph

ZIN magnifies the part of the graph surrounding the cursor location. **ZOUT** displays a greater portion of the graph, centered on the cursor location. **xFact** and **yFact** determine the extent. The steps below describe how to use **ZIN**. To use **ZOUT**, select it instead of **ZIN** in step 2.

Before you begin these steps, enter a function in the equation editor. In the example, the function y(x)=x^3+.3x²-4x is graphed.

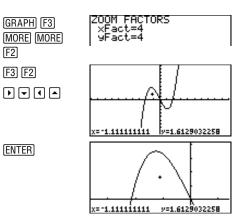

To cancel **BOX** without redefining the graph screen, press [CLEAR].

When you replot the graph, the TI-86 updates the window variable values.

To store to **xFact** or **yFact** from the home screen or in the program editor, you can select it from the VARS ALL screen or enter it using ALPHA and alpha keys. **GRAPH F3**

ENTER

CLEAR


y=4.1935483871

In the example, the function y(x)=x^3+.3x²-4x is graphed.

When you select a ZOOM feature, Smart Graph displays the current graph.

To cancel a zoom before you complete it, press <u>CLEAR</u>.

- 1 Check **xFact** and **yFact**; change as needed.
- Select ZIN from the GRAPH ZOOM menu to display the zoom cursor.
- 3 Move the zoom cursor to the intended new center point of the graph screen.
- Zoom in. The TI-86 adjusts the graph screen by xFact and yFact, updates window variable values, and replots the selected functions centered on the cursor location.

You can continue to zoom in (or zoom out) on the current graph, unless you press a key other than \underline{ENTER} , \triangleright , \bigtriangledown , \checkmark , \checkmark , \bullet , or \blacktriangle .

- To zoom in (or zoom out) again at the same point, press ENTER.
- To zoom in (or zoom out) at a new center point, move the cursor and press ENTER.

To zoom out only on the horizontal axis by a factor of **xFact**, select **ZOOMX** instead of **ZIN** in step 2 above. **ZOOMX** plots the selected functions centered on the cursor location and updates some window variable values; **yMin** and **yMax** are unchanged.

To zoom out only on the vertical axis by a factor of **yFact**, select **ZOOMY** instead of **ZIN** in step 2 above. **ZOOMY** plots the selected functions centered on the cursor location and updates some window variable values; **xMin** and **xMax** are unchanged.

You can select all zoomwindow variables from the VARS WIND screen in any graph mode.

You also can enter the variable characters individually.

The zoom-window variables resume their standard default values when you reset defaults.

Storing and Recalling Zoom-Window Variable Values

- To store all current zoom-window variable values simultaneously as a user-defined custom zoom feature, select **ZSTO** from the GRAPH ZOOM menu.
- To execute a user-defined custom zoom, which resets the graph screen to the stored zoom-window variables, select **ZRCL** from the GRAPH ZOOM menu.

Using ZSTO in these graphing modes:	Stores to these zoom-window variables:
Func, Pol, Param, and DifEq graphing modes	zxMin, zxMax, zxScl, zyMin, zyMax, and zyScl
Pol graphing mode only	$z\theta$ Min, $z\theta$ Max, and $z\theta$ Step
Param graphing mode only	ztMin, ztMax, and ztStep
DifEq graphing mode only	ztMin, ztMax, ztStep, and ztPlot

Using Interactive Math Functions

When you select a GRAPH MATH operation, Smart Graph displays the current graph with the trace cursor. To perform the GRAPH MATH operation, press $rac{1}{2}$ and $rac{1}{2}$ to move to the function.

When a GRAPH MATH menu operation prompts you to specify left bound, right bound, and guess, the accuracy of the values you specify will affect the length of time the TI-86 spends calculating the answer; the better the guess, the shorter the calculation time.

1	he GRA	PH MATH	(GRAPH)	MORE) [F1]		
	MATH	DRAW	FORMT	STGDB	RCGDB	
	ROOT	dy∕dx	∫f(x)	FMIN	FMAX	

TANLN

differs slightly for Pol and dy/dx Finds a numeric derivative (slope) of a function at the trace cursor location	
Param graphing modes	
(Chapters 8 and 9). $f(\mathbf{x})$ Finds a function's numerical integral using a specified left bounds and right bound	
DifEq graphing mode has no FMIN Finds a function's minimum using a specified left bound, right bound, and guess	
GRAPH MATH <i>menu.</i> FMAX Finds a function's maximum using a specified left bound, right bound, and guess	
INFLC Finds a function's inflection point using a specified left bound, right bound, and guess	
YICPT Finds a function's y-intercept (y at x=0)	
ISECT Finds the intersection of two functions using a specified left bound, right bound, and gue	ess
DIST Finds the straight-line distance between a specified left bound and right bound	
ARC Finds the distance along a function between two specified points on the function	

TANLN Draws the tangent line at a specified point

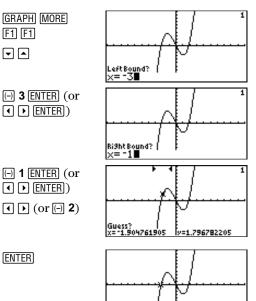
Settings That Affect GRAPH MATH Operations

- The tolerance variable tol (Appendix) affects the accuracy of f(x), FMIN, FMAX, and ARC. Accuracy increases as the tolerance value becomes smaller.
- The step-size variable δ (Appendix) affects the accuracy of dy/dx, INFLC in dxNDer differentiation mode (Chapter 1), ARC, and TANLN. Accuracy increases as the step-size value becomes smaller.
- The differentiation mode setting affects dy/dx, INFLC, ARC, and TANLN; dxDer1 (exact) mode is more accurate than dxNDer (numeric) mode (Chapter 1).

Using ROOT, FMIN, FMAX, or INFLC

The steps for ROOT, FMIN, FMAX, and INFLC are the same, except for the menu selection in step 1.

[F1] [F1]


 $\overline{}$

ENTER

In the example, the function y(x)=x^3+.3x²-4x is selected. Step 2 is not necessary here because only one function is selected.

When vou enter a value directly for the left bound. right bound, or guess, an x= prompt is displayed on the bottom of the graph screen.

- a Select **ROOT** from the GRAPH MATH menu. A Left Bound? prompt is displayed.
- Move the cursor onto the function for which A vou want to find a root.
- Specify the left bound for **x**. Either move the 0 trace cursor to the left bound or enter a value directly. Right Bound? is displayed.
- Specify the right bound for **x** as in step 3. 4 Guess? is displayed.
- Guess an **x** value near the root between the 6 left bound and the right bound. Either move the cursor or enter a value.
- 6 Solve for **x**. The result cursor is displayed at the solution point, the cursor coordinate values are displayed, and the **x** value is stored in Ans

ROOT | x=-2.155<u>617112</u>

Using ∫f(x), DIST, or ARC

The steps for using *f(x)*, **DIST**, and **ARC** are the same, except for the menu selection in step 1.

GRAPH [MORE]

F1 MORE F4

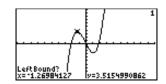
Image: Image

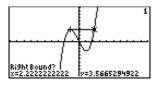
value [ENTER]

 $\overline{}$

 $\overline{}$

I D or


value

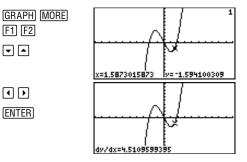

ENTER


In the example, the function **y(x)=x^3+.3x**²-4**x** is selected. Steps 2 and 4 are not necessary here because only one function is selected.

For **DIST**, when you are specifying the right bound, a line is drawn from the left bound to the right bound.

- Select DIST from the GRAPH MATH menu. The current graph is displayed with a Left Bound? prompt.
- 2 Move the cursor onto the function on which the left bound is a point.
- Select the left bound for x. Either move the cursor to the left bound or enter the x value.Right Bound? is displayed.
- (DIST only) If you want the right bound to be a point on another function, move the cursor to the other function.
- Select the right bound. Either move the cursor to the right bound or enter its x value.
- 6 Solve.
 - For **DIST**, the solution **DIST=** is displayed and stored in **Ans**.
 - For ARC, the solution ARC= is displayed and stored in Ans.
 - For jf(x), the solution jf(x)= is displayed, shaded, and stored in Ans. The function integral error value is stored to the variable fnIntErr (Appendix). To remove the shading, select CLDRW from the GRAPH DRAW menu (page 103).

Using dy/dx or TANLN

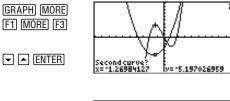

The steps for using dy/dx and TANLN are the same, except for the menu selection in step 1.

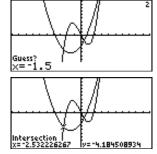
[F1] [F2]

[ENTER]

- a Select **dy/dx** from the **GRAPH** MATH menu. The current graph is displayed.
- Ø Move the cursor to the function with the point for which you want to find the derivative, or slope.
- Move the cursor to the point (or enter the **x** ß value).
- Solve. A
 - For dy/dx, the solution dy/dx= is displayed and stored in Ans.
 - For **TANLN**, a tangent line also is displayed. ٠

To remove the tangent line and dy/dx= prompt, select **CLDRW** from the GRAPH DRAW menu.


In the example, the function y(x)=x^3+.3x²-4x is selected.


TANLN (GRAPH MATH menu) and TanLn (GRAPH DRAW menu) both draw a tangent line on the graph; only TANLN displays the solution, dy/dx.

In the example, the functions $y(x)=x^3+.3x^2-4x$ and $y(x)=x^2+3x-3$ are selected.

Using ISECT

- Select **ISECT** from the GRAPH MATH menu. The current graph is displayed with **First Curve**? at the bottom of the graph screen.
- Select the first function (curve). The cursor moves to the next function and Second Curve? is displayed.
- 3 Select the second function (curve). **Guess?** is displayed.
- Guess the intersection. Either move the cursor to a point near an intersection or enter an x value.
- Solve. The result cursor is displayed at the intersection , the cursor coordinates are the result, and the x value is stored to Ans.

Using YICPT

To use **YICPT**, select **YICPT** from the GRAPH MATH menu (GRAPH MORE F1 MORE F2). Press \checkmark and \checkmark to select a function, and then press ENTER. The result cursor is displayed at the y-intercept, the cursor coordinate values are displayed, and **y** is stored in **Ans**.

ENTER

(-) **1** . 5

ENTER

(or ())

To clear entered numbers from the Eval x= prompt, press CLEAR.

To cancel EVAL, press CLEAR after clearing the Eval x= prompt.

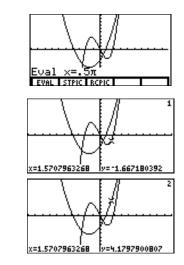
Expressions are valid for x.

You may continue to enter valid x values for which to evaluate the selected functions.

Evaluating a Function for a Specified x

- Select **EVAL** from the GRAPH menu. The graph is displayed with the **Eval x=** prompt in the bottom-left corner.
- 2 Enter a real **x** value between window variables **xMin** and **xMax**.
- Evaluate. The result cursor is on the first selected function at the entered x value. The coordinate values are displayed. The number in the top-right corner indicates which function is evaluated.
- Move the result cursor to the next or previous selected function. The result cursor is on the next or previous function at entered x value, the coordinate values are displayed, and the function number changes.

Drawing on a Graph


You can use the drawing tools (except **DrInv**) to draw points, lines, circles, shaded areas, and text on the current graph in any graphing mode. The drawing tools use the display's x-and y-coordinate values.

GRAPH [MORE]

• **5** [2nd] [π]

[ENTER]

MORE F1

Before Drawing on a Graph

All drawings are temporary; they are not stored in a graph database. Any action that causes Smart Graph to replot the graph erases all drawings. Therefore, before you use any drawing tool, consider whether you want to perform any of these graphing activities first.

- Change a mode setting that affects graphs
- Select, deselect, or edit a current function or stat plot
- Change the value of a variable used in a selected function
- Change a window variable value
- Change a graph format setting or graph style
- ♦ Clear current drawings with CLDRW

Saving and Recalling Drawn Pictures

To store the elements that define the current graph to a graph database (**GDB**) variable, select **STGDB** from the GRAPH menu. These information types are stored to a **GDB** variable:

• Equation editor functions

• Window variable values

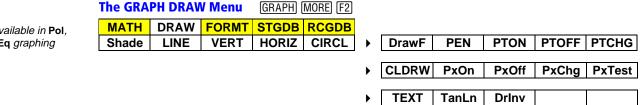
• Graph style settings

• Format settings

To recall the stored **GDB** later, select **RCGDB** from the GRAPH menu, and then select the **GDB** variable from the GRAPH RCGDB menu. When you recall a **GDB**, the information stored in the **GDB** replaces any current information of these types.

To store the current graph display, including drawings, to a picture (**PIC**) variable, select **STPIC** from the GRAPH menu. Only the graph picture is stored to the specified **PIC** variable.

To superimpose one or more stored graph pictures onto a graph later, select **RCPIC** from the GRAPH menu, and then select the **PIC** variable from the GRAPH RCPIC menu.


Graph database (GDB) and picture (PIC) variable names can be from one to eight characters long. The first character must be a letter.

The next section describes how to draw lines, points, curves, and text onto a graph; you then can store the drawings to a **PIC** variable.

Clearing Drawn Pictures

To clear drawn pictures while the graph is displayed, select **CLDRW** from the GRAPH DRAW menu. The graph is replotted and displayed with no drawn elements.

To clear drawn pictures from the home screen, select **CIDrw** from the CATALOG. **CIDrw** is pasted to the cursor location. Press **ENTER**. **Done** is displayed; when you display the graph again, no drawings are displayed.

You can use these GRAPH DRAW menu items only on the home screen or in the program editor.

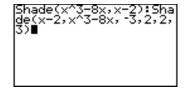
Shade(Shades a specified area of a graph (See page 104)
DrawF expression	Draws expression as a function
PxOn(row,column)	Turns on the pixel at (row,column)
PxOff(row,column)	Turns off the pixel at (row,column)
PxChg(row,column)	Changes the on/off status of the pixel at (row,column)
PxTest(row,column)	Returns 1 if the pixel at (<i>row,column</i>) is on, or 0 if the pixel is off
TanLn(expression,x)	Draws <i>expression</i> as a function and a tangent line of <i>expression</i> at x
DrInv expression	Draws the inverse of <i>expression</i>

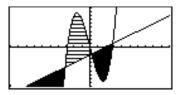
Drlnv is not available in Pol, Param, or DifEq graphing modes.

For PxOn, PxOff, PxChg, and PxTest, row and column are integers, where 0≤row≤62 and 0≤column≤126.

For DrawF, TanLn, and DrInv, expression is in terms of x. Also, you cannot include a list in expression to draw a family of curves.

Shading Areas of a Graph


To shade an area of a graph, the syntax is: Shade(lowerFunc,upperFunc[,xLeft,xRight,pattern,patternRes])


pattern specifies one of four shading patterns.

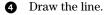
- vertical (default) horizontal 2 3 negative slope(45°)
 - 4 positive slope (45°)

patternRes specifies one of eight shading resolutions.

- every pixel (default) 1
- 2 every second pixel
- 3 every third pixel
 - every fourth pixel
- 5 every fifth pixel 6
 - every sixth pixel
- 7 every seventh pixel 8
 - every eighth pixel

- The area that is specifically above *lowerFunc* and below *upperFunc* is shaded.
- xLeft > xMin and xRight < xMax must be true.
- *xLeft* and *xRight* specify left and right bounds for shading. (**xMin** and **xMax** are defaults.)

These GRAPH DRAW menu items are interactive. Also, you can use all of them, except **PEN**, on the home screen or in a program (A to Z Reference).

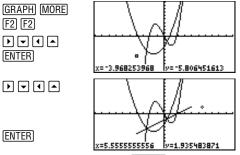

- LINE Draws a line segment from one point to another point you specify with the cursor
- VERT Draws a vertical line, which you can move to any displayed **x** value

To replicate the example without additional graphs. turn off all equations and stat plots before entering the instructions as shown.

- HORIZ Draws a horizontal line, which you can move to any displayed y value
- CIRCL Draws a circle with a center point and radius you specify with the cursor
- PEN Draws the path of the cursor as you move it on the graph screen
- Turns on the point at the cursor location PTON
- PTOFF Turns off the point at the cursor location
- **PTCHG** Changes the on/off status of a point at the cursor location
- **CLDRW** Clears all drawings from the graph screen; replots the graph
- TEXT Draws characters on the graph at the cursor location

Drawing a Line Segment

- Select LINE from the GRAPH DRAW menu. The ก graph is displayed.
- Define one segment endpoint with the cursor. ค
- Define the other endpoint of the segment. As ß you move the cursor, a line anchored at the first defined endpoint extends to the cursor.



To draw more line segments, repeat steps 2 and 3; to cancel LINE, press [CLEAR].

F2 F2

[ENTER]

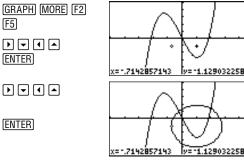
[ENTER]

In the example, the functions y(x)=x^3+.3x2-4x and y(x)=x2+3x-3 are selected.

In the example, the function y(x)=x^3+.3x²-4x is selected. Also, ZIN was executed once with the zoom cursor at (0,0), xFact=2, and yFact=2.

In the example, the function y(x)=x^3+.3x²-4x is selected. Also, ZIN was executed once with the zoom cursor at (0,0), xFact=2, and yFact=2.

Here the circle appears as a circle, regardless of window variable values. When you use Circl(from the CATALOG to draw a circle, the current window variable values may distort the shape.


Drawing a Vertical or Horizontal Line

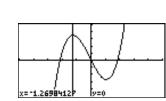
- Select VERT (or HORIZ) from the GRAPH DRAW menu. The graph is displayed and a vertical or horizontal line is drawn at the cursor.
- 2 Move the line to the **x** value (or to the **y** value, if horizontal) through which you want the line to pass.
- **3** Draw the line on the graph.

To draw more lines, repeat steps 2 and 3; to cancel VERT or HORIZ, press CLEAR.

Drawing a Circle

- Select CIRCL from the GRAPH DRAW menu. The graph is displayed.
- 2 Define the center point of the circle with the cursor.
- 3 Move the cursor to any point on the intended circumference.
- Draw the circle.

GRAPH MORE


[F2] [F3]

[ENTER]

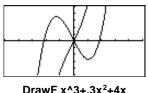
(or[F4])

(or **(**)

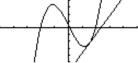
To draw more circles, repeat steps 2 through 4; to cancel CIRCL, press CLEAR.

For DrawF, TanLn, and DrInv, you can use as expression any variable to which a valid expression is stored (including deselected equation variables).

In the illustrations, y1=x^3+.3x²-4x is selected.

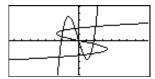

In the example, the function y(x)=x^3+.3x²-4x is selected. Also, ZSTD was executed.

To draw a diagonal line or curve, turn on the pen, press ENTER ENTER, press ((or), and so on), and repeat.


Drawing a Function, Tangent Line, or Inverse Function

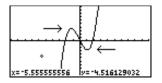
For DrawF, TanLn, and DrInv, *expression* is in terms of x. When you select DrawF, TanLn, or DrInv from the GRAPH DRAW menu, it is pasted to the home screen or program editor. Upon execution, the drawing is returned. DrInv draws the inverse of *expression* by plotting its x values on the y-axis and its y values on the x-axis. DrInv is available only in Func graphing mode.

DrawF expression



TanLn(expression,x)

TanLn(y1,1.5)


DrInv expression

Drawing Freehand Points, Lines, and Curves

Select **PEN** from the GRAPH DRAW GRAPH MORE F2 A MORE F2 menu. $\mathbf{F} = \mathbf{F}$ Move the cursor to where you want to 0 begin drawing. Turn on the pen. ENTER 3 $\mathbf{F} \mathbf{I} \mathbf{I}$ Draw whatever you want. 4 Turn off the pen. ENTER 6

To draw more points, lines, or curves, repeat steps 2 through 5. To cancel, press [CLEAR].

This example adds to the **PEN** example drawing. Before you start, you may want to store the arrows to a picture variable (page 102).

To erase a character when using TEXT, move the TEXT cursor above it and then press [ALPHA] [...] or [2nd] [alpha] [...] to overwrite it.

In the example, the function $y(x)=x^3+.3x^2-4x$ is selected. Also, ZSTD was executed. Points are turned on at (-5,5), (5,5), (5,5), and (-5,-5).

Placing Text on a Graph

- Select **TEXT** from the GRAPH DRAW menu. The text cursor is displayed.
- Move the cursor to where you want to enter text. Text is entered below the text cursor.
- Set alpha-lock and enter min. (The alpha cursor (2) is displayed in the top-right corner.
- **4** Move the cursor to another location.
- **5** Enter **max** (alpha-lock remains on).

Turning On or Turning Off Points

- 1 Select **PTON** (or **PTOFF**) from the GRAPH DRAW menu.
- 2 Move the cursor to where you want to draw (or erase) a point.
- **3** Turn on (or turn off) the point.

To continue drawing points, repeat steps 2 and 3. To cancel PTON, press [CLEAR].

GRAPH MORE F2

 $\mathbf{F} = \mathbf{F}$

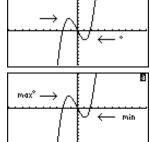
[M][I][N]

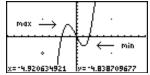
 $\blacktriangleright \frown \bullet \bullet$

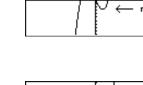
[M][A][X]

MORE F3

 $\blacktriangleright \frown \bullet \bullet$

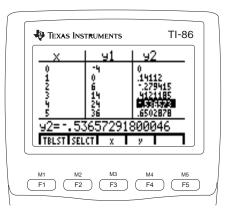

[ENTER]

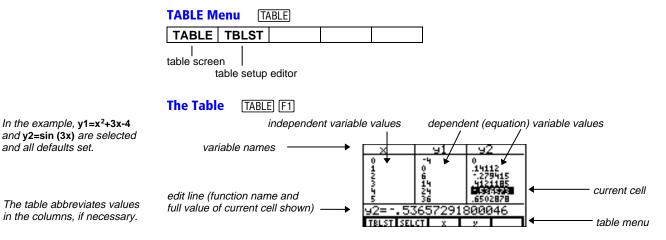

[F1]


[MORE] [MORE] [MORE]

[2nd] [alpha] [ALPHA]

GRAPH MORE F2





Displaying the Table	110
Setting Up the Table	
Clearing the Table	

Displaying the Table

To display the equation editor, press GRAPH F1 (Chapter 5). The table displays the independent values and corresponding dependent values for up to 99 selected functions in the equation editor. Each dependent variable in the table represents a selected function stored in the equation editor for the current graphing mode.

To edit an equation, press in the equation's table column until the cursor highlights the equation variable on the top line, and then press ENTER. The expression stored to the current equation variable is displayed in the edit line.

Independent and Dependent Variables in the Table

Graphing Mode Independent Variable **Dependent** (Equation) Variables Func (function) v1 through v99 х r1 through r99 **Pol** (polar) θ Param (parametric) xt1/yt1 through xt99/yt99 t **DifEq** (differential equation) Q1 through Q9 t Navigating the Table То... Do this: Display more dependent variables in the table Press \blacktriangleright or \checkmark Display greater values in any column Press $\overline{}$ (only when **Indpnt: Auto** is set; page 112) Set **TblStart** to a lower value Press in the independent variable column until the cursor moves past the current **TblStart** (page 112) Display the equation in the edit line, where you Press \frown or \bigcirc to move the cursor to an equation can edit or deselect it variable column, hold until the cursor highlights the equation name, and then press [ENTER]; the equation is displayed in the edit line

In **DifEq** mode, if an equation has an initial conditions list, the table uses the first list element to evaluate the equation (Chapter 10).

The Table Menus TABLE F1

The table has a unique menu for each graphing mode, as shown below.

In Function Graphing Mode

TBLST SEL	CT X	У	
-----------	------	---	--

In Parametric Graphing Mode

TBLST	SELCT	t	xt	yt

In Polar Graphing Mode

SELCT

TBLST SELCT θ r

In Differential Equation Graphing Mode

TBLST SELCT	t	Q	
-------------	---	---	--

On the edit line, deselects or cancels deselection of the equation

x and **y**; θ and **r**; **t**, **xt**, On the edit line, pastes the variable to the cursor location; the variables change according to graphing mode

- To add an equation to the table, select it in the equation editor (Chapter 5). **SELCT** only removes equations from the table.
- To remove an equation from a column in the table, select **SELCT** from the table menu. Remaining equations that follow the removed equation shift left one column.
- To deselect an equation with **SELCT**, the equation and cursor must be displayed in the edit line. If the equation is in the edit line but the cursor is not, press **ENTER**.
- To compare two dependent variables not defined consecutively in the equation editor, use **SELCT** from the table screen menu to deselect the dependent variables in between.

Setting Up the Table

To display the table using the current table setup settings, select **TABLE** from the TABLE menu.

TblStart and **∆Tbl** must be real numbers; you can enter an expression.

```
In DifEq graphing mode,
it is a good practice to set
TblStart = tMin and
\DeltaTbl = tStep.
```

To display the table setup editor, select **TBLST** from the TABLE menu. The screen to the right shows the default table setup settings.

TblStart specifies the first independent variable value $(\mathbf{x}, \theta, \text{ or } \mathbf{t})$ in the table (only when **Indpnt: Auto** is selected).

 Δ **Tbl** (table step) specifies the increment or decrement from one independent variable value to the next independent variable value in the table.

- If Δ **Tbl** is positive, then the values of **x**, θ , or **t** increase as you scroll down the table.
- If Δ Tbl is negative, then the values of **x**, θ , or **t** decrease as you scroll down the table.

Indpnt: Auto displays independent variable values automatically in the first column of the table, starting at **TblStart**.

Indpnt: Ask displays an empty table. As you enter x values in the x= prompt (x=value ENTER), each value is added to the independent variable column and the corresponding dependent variable values are calculated and displayed. When Ask is set, you cannot scroll beyond the six independent variable values that are currently displayed in the table.

In the example, y1=x²+3x-4 and y2=sin (3x) are selected and all defaults set.

When you display the equation in the edit line, the column equation name is highlighted.

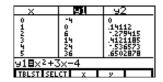
When you use **CITbI** in a program, the table is cleared upon program execution (Chapter 16).

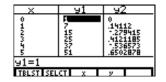
Viewing and Editing Dependent Variable Equations

- 1 Display the table.
- 2 Move the cursor into the column of the dependent variable you want to edit, and then move up the column until the name is highlighted.
- **3** Display the equation in the edit line.
- Edit the equation.
- **5** Enter the edited equation.
 - The dependent variable values are recalculated.
 - The cursor returns to the edited dependent variable's first value.
 - The equation editor is updated.

Clearing the Table

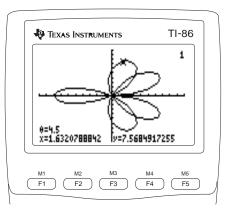
To clear the table when **Indpnt: Ask** is set, select **CITbI** from the CATALOG, and then press <u>ENTER</u>. All independent and dependent variable columns are cleared. **CITbI** does nothing when **Indpnt: Auto** is set.

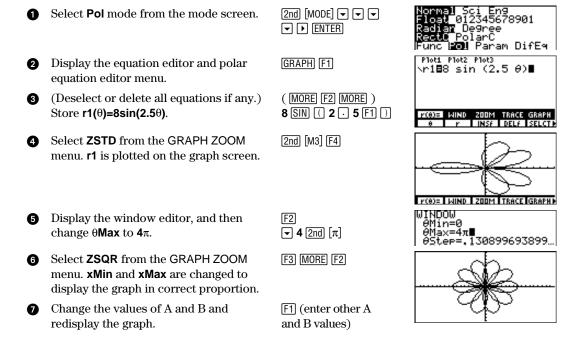

TABLE F1


ENTER

+ 1

ENTER


 $\mathbf{F} \mathbf{F} \mathbf{F} \mathbf{5} \mathbf{F}$

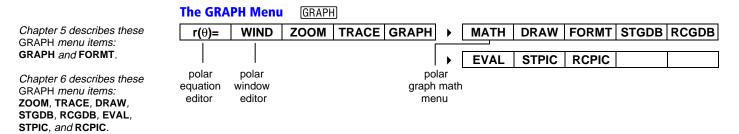

8 Polar Graphing

Preview: Polar Graphing	116
Defining a Polar Graph	117
Using Graph Tools in Pol Graphing Mode	119

Preview: Polar Graphing

The graph of the polar equation A sin (B θ) forms the shape of a flower. Graph the flower for A=8 and B=2.5. Then explore the appearance of the flower for other values of A and B.

To remove the GRAPH menu from the graph screen, as shown, press [CLEAR].


To redisplay the GRAPH menu, press GRAPH.

Defining a Polar Graph

The steps for defining a polar graph are similar to the steps for defining a function graph. This chapter assumes that you are familiar with Chapter 5: Function Graphing and Chapter 6: Graph Tools. Chapter 8 details aspects of polar graphing that differ from function graphing.

Setting Polar Graphing Mode

To display the mode screen, press 2nd [MODE]. To graph polar equations, you must select **Pol** graphing mode before you enter equations, set the format, or edit window variable values. The TI-86 retains separate equation, format, and window data for each graphing mode.

θ**Max** default is 2π . θ**Step** default is $\pi/24$

Displaying the Polar Equation Editor

To display the polar equation editor, select $r(\theta)$ = from the GRAPH menu in **Pol** graphing mode (<u>GRAPH</u> [F1]). The polar equation editor menu displayed on the bottom line is the same as the **Func** mode equation editor menu, except that θ and **r** replace **x** and **y**.

In this editor, you can enter and display up to 99 polar equations, **r1** through **r99**, if sufficient memory is available. Equations are defined in terms of the independent variable θ .

The default graph style is ¹ (line) in **Pol** graphing mode. (shade above) and (shade below) graph styles are not available in **Pol** graphing mode.

Setting the Graph Screen Window Variables

To display the polar window editor, select **WIND** from the GRAPH menu (<u>GRAPH</u> <u>F2</u>). **Pol** graphing mode has the same window variables as **Func** graphing mode, except:

- **xRes** is not available in **PoI** graphing mode.
- θ Min, θ Max, and θ Step are available in Pol graphing mode.

The values shown in the picture to the right are the

defaults in Radian mode. \downarrow indicates that yMin=-10, yMax=10, and yScI=1 are beyond the screen.

	θ Min=0	Specifies the first $\boldsymbol{\theta}$ value to evaluate within the graph screen
	θMax=6.28318530718	Specifies the last $\boldsymbol{\theta}$ value to evaluate within the graph screen
24.	θStep=.13089969389957	Specifies the increment from one θ value to the next θ value

Ploti Plot2 \r1∎8 sir	P10t3 n (2.5 0)∎	
r(8)= WIND 8 r	ZOOM TRACE GR	

WINDOW
↓×>C1=1 γ(0)= wind zoom trace graphi

DrawLine graph format typically displays a more meaningful polar graph than **DrawDot** graph format.

Setting the Graph Format

To display the format screen in **Pol** graphing mode, select **FORMT** from the GRAPH menu (<u>GRAPH</u> <u>MORE</u> <u>F3</u>). Chapter 5 describes the format settings. Although the same settings are available for **Func**, **Pol**, and **Param** graphing modes, the TI-86 retains in memory separate format settings for each mode. In **Pol** graphing mode, **PolarGC** shows the cursor coordinates in terms of **r** and θ , the variables that define the equations.

Displaying the Graph

To plot the selected polar equations, you can select **GRAPH**, **TRACE**, **EVAL**, **RCGDB**, or a **ZOOM**, **MATH**, **DRAW**, or **RCPIC** operation, from the GRAPH menu. The TI-86 evaluates **r** for each value of θ (from θ **Min** to θ **Max** in intervals of θ **Step**) and then plots each point. As the graph is plotted, the variables θ , **r**, **x**, and **y** are updated.

Using Graph Tools in Pol Graphing Mode

The Free-Moving Cursor

The free-moving cursor in **Pol** graphing works the same as in **Func** graphing.

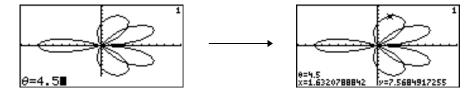
- In **RectGC** format, moving the cursor updates the values of **x** and **y**; if **CoordOn** format is selected, **x** and **y** are displayed.
- In PolarGC format, moving the cursor updates x, y, r, and θ; if CoordOn format is selected, r and θ are displayed.

Tracing a Polar Equation

To begin a trace, select **TRACE** from the GRAPH menu (press GRAPH F4). The trace cursor appears on the first selected equation at θ Min.

- In RectGC format, moving the trace cursor updates the values of θ, x, and y; if CoordOn format is selected, θ, x, and y are displayed.
- In PolarGC format, moving the trace cursor updates x, y, r, and θ; if CoordOn format is selected, r and θ are displayed.

Тс	move the trace cursor	Press:
Ale	ong the graph of the equation by increments or decrements of θ Step	▶ or ◀
Fr	om one equation to another	▼ or ▲


If you move the trace cursor beyond the top or bottom of the graph screen, the coordinate values at the bottom of the screen continue to change appropriately.

If you have graphed a family of curves, \bigtriangledown and \blacktriangle move through each curve before moving to the next polar equation.

QuickZoom is available in **Pol** graphing; panning is not (Chapter 6).

Moving the Trace Cursor to a θ Value

To move the trace cursor to any valid θ value on the current equation, enter the number. When you enter the first digit, a θ = prompt is displayed in the bottom-left corner. The value you enter must be valid for the current graph screen. When you have completed the entry, press ENTER to reactivate the trace cursor.

Using Zoom Operations

The GRAPH ZOOM menu items, except **ZFIT**, work the same in **Pol** graphing as in **Func** graphing. In **Pol** graphing mode, **ZFIT** adjusts the graph screen in both the x and y directions.

The zoom operations affect only the **x** window variables (**xMin**, **xMax**, and **XscI**) and the **y** window variables (**yMin**, **yMax**, and **yScI**), except **ZSTO** and **ZRCL**, which also affect the θ window variables (θ Min, θ Max, and θ Step).

In the example, **r1=8sin(2.5** θ *) is graphed.*

Values for θ , \mathbf{x} , and \mathbf{y} are displayed on the graph to the right because **RectGC** graph format is selected.

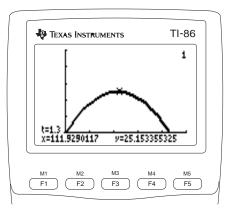
The G	RA	PH MATH	GRAPH [MORE] [F1]			
MAT	Η	DRAW	FORMT	STGDB	RCGDB	
DIST	Γ	dy/dx	dr∕dθ	ARC	TANLN	

The other GRAPH MATH menu items are the same as described in Chapter 6. $dr/d\theta$ Finds the numerical derivative (slope) of a function at a point

The distances calculated by **DIST** and **ARC** are distances in the rectangular coordinate plane. dy/dx and $dr/d\theta$ are independent of the **RectGC** or **PolarGC** format.

At a point where the derivative is undefined, **TANLN** will draw the line, but no result is displayed or stored in **Ans**.

Evaluating an Equation for a Specified $\boldsymbol{\theta}$


When the trace cursor is not active, the GRAPH menu item **EVAL** evaluates selected polar equations directly on the graph for a given value of θ . **eval** in a program or from the home screen returns a list of r values.

Drawing on a Polar Graph

The GRAPH DRAW menu items work the same in **Pol** graphing as in **Func** graphing. DRAW instruction coordinates in **Pol** graphing mode are the x- and y-coordinates of the graph screen. **DrInv** is not available in **Pol** graphing mode.

Parametric Graphing

Preview: Parametric Graphing	124
Defining a Parametric Graph	125
Using Graph Tools in Param Graphing Mode	128

Preview: Parametric Graphing

Graph the parametric equation that describes the path of a ball kicked at an initial speed of 30 meters per second, at an initial angle of 25 degrees with the horizontal (from ground level). How far does the ball travel? When does it hit the ground? How high does it go?

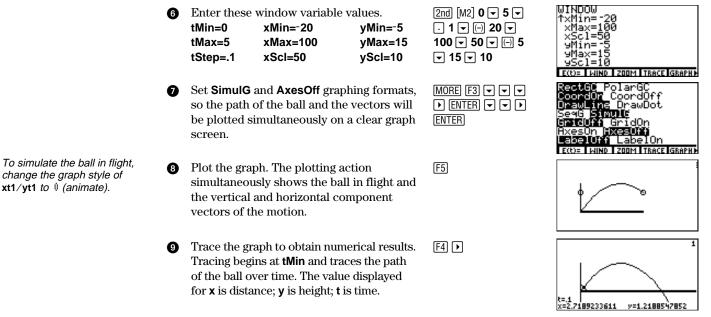
- Select **Param** mode from the mode screen.
- 2 Display the equation editor and parametric equation editor menu. Deselect all equations and plots (if any are defined).
- Define the path of the ball as xt1 and yt1 in terms of t. Horizontal: xt1=tv₀cos(θ) Vertical: vt1=tv₀sin(θ)-1/2(gt²)

Vertical: $yt1=tv_0sin(\theta)-1/2(gt^2)$ Gravity constant: $g=9.8 \text{ m/sec}^2$

- Define the vertical component vector as xt2 and yt2 and define the horizontal component vector as xt3 and yt3.
- Change the graph style of xt3/yt3 to
 (thick). Change the graph style of xt2/yt2 and xt1/yt1 to # (path).

GRAPH [F1] (MORE [F2] [MORE])	
30 F1 COS (25 2nd [MATH] F3 F1) ▼ 30 2nd [M1] SIN (25 F1) - 9 . 8 ÷ 2 2nd [M1] x ² ▼	
0 2nd [M3] 1 2nd [M2] 1 0	
EXIT MORE F4 -	

F4 F4

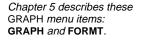

2nd [MODE] - - -

► ► ENTER

Normal Sci Eng Float 012345678901 Radiam Degree Recti PolarC Func Pol Param DifEq
Pioti Piot2 Piot3 \xt1≣30t cos (25°) yt1≣30t sin (25°)-9 \xt2=∎ yt2=
t xt 9t DELF SELCT O 7 I POMS
Plot: Plot2 Plot3 9t1830t sin (25°)-9… \xt280 9t289t1 \xt38xt1 9t380 9t380
t xt yt DELF SELCT O P ^a I ▶DMS
Ploti Plot2 Plot3 ≪t1830t cos (25°) yt1830t sin (25°)-9 ≪t280 yt28yt1 \xt38xt1

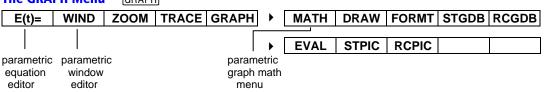
WIND ZOOM TRACE GRAPH

In the example, ignore all forces except gravity. For initial velocity v_0 and angle θ , the position of the ball as a function of time has horizontal and vertical components.


Defining a Parametric Graph

The steps for defining a parametric graph are similar to the steps for defining a function graph. This chapter assumes that you are familiar with Chapter 5: Function Graphing and Chapter 6: Graph Tools. This chapter details those aspects of parametric graphing that differ from function graphing.

Setting Parametric Graphing Mode


To display the mode screen, press 2nd [MODE]. To graph parametric equations, you must select **Param** graphing mode before you enter equations, set the format, or edit window variable values. The TI-86 retains in memory separate equation, format, and window data for each graphing mode.

The GRAPH Menu GRAPH

Chapter 6 describes these GRAPH menu items: ZOOM, TRACE, DRAW, STGDB, RCGDB, EVAL, STPIC, and RCPIC.

A common application of parametric graphs is graphing equations over time.

Displaying the Parametric Equation Editor

To display the parametric equation editor, select **E(t)=** from the GRAPH menu in **Param** graphing mode (<u>GRAPH</u> [F1]). The equation editor menu displayed on the bottom line is the same as the **Func**-mode equation editor menu, except that **t** and **xt** replace **x** and **y**, and **yt** displaces **INSf**.

In this editor, you can enter and display both the x and y components of up to 99 parametric equations, **xt1** and **yt1** through **xt99** and **yt99**, if sufficient memory is available. Each is defined in terms of the independent variable **t**.

Ploti Plo Nxt1= Yt1=	ot2 Plot3	
ECD= WI	ND ZOOM t yt	GRAPH Seleti)

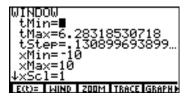
Two components, **x** and **y**, define a single parametric equation. You must define both **xt** and **yt** for each equation.

The default graph style is ' (line) in **Param** mode. **(shade above)** and **(shade below)** graph styles are not available in **Param** mode.

Selecting and Deselecting a Parametric Equation

When a parametric equation is selected, the equals signs (=) of both **xt** and **yt** are highlighted. To change the selection status of a parametric equation, move the cursor onto either **xt** or **yt**, and then select **SELCT** from the equation editor menu. The status is changed for **xt** and **yt**.

Deleting a Parametric Equation


To delete a parametric equation using **DELf**, move the cursor to either **xt** or **yt**, and then select **DELf** from the equation editor menu. Both components are deleted.

To delete a parametric equation using the MEM DELET menu (Chapter 17), you must select the **xt** component. If you select the **yt** component, the equation is retained in memory.

Setting the Graph Screen Window Variables

To display the parametric window editor, select **WIND** from the GRAPH menu (<u>GRAPH</u> F2). **Param** graphing mode has the same window variables as **Func** graphing mode, except:

- **xRes** is not available in **Param** mode.
- tMin, tMax, and tStep are available in Param mode.

The values shown in the picture to the right are the

defaults in Radian mode. ↓ indicates that yMin=-10, yMax=10, and yScl=1 are beyond the screen.

	tMin=0	Specifies the starting t value
tMax default is 2π .	tMax=6.28318530718	Specifies the ending t value
tStep default is $\pi/24$.	tStep=.13089969389957	Specifies the increment from one \boldsymbol{t} value to the next

DrawLine graph format typically displays a more meaningful parametric graph than DrawDot graphing format.

Setting the Graph Format

To display the format screen in **Param** graphing mode, select **FORMT** from the GRAPH menu (<u>GRAPH</u> <u>MORE</u> <u>F3</u>). Chapter 5 describes the format settings. The TI-86 retains in memory separate format settings for **Func**, **Pol**, **Param**, and **DifEq** graphing modes.

Displaying the Graph

To plot the selected parametric equations, you can select **GRAPH**, **TRACE**, **EVAL**, **RCGDB**, or a **ZOOM**, **MATH**, **DRAW**, or **RCPIC** operation. The TI-86 evaluates **x** and **y** for each value of **t** (from **tMin** to **tMax** in intervals of **tStep**) and then plots each point defined by **x** and **y**. As the graph is plotted, the variables **x**, **y**, and **t** are updated.

Using Graph Tools in Param Graphing Mode

The Free-Moving Cursor

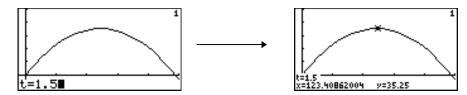
The free-moving cursor in Param graphing works the same as in Func graphing.

- In **RectGC** format, moving the cursor updates the values of **x** and **y**.; if **CoordOn** format is selected, **x** and **y** are displayed.
- In **PolarGC** format, moving the cursor updates **x**, **y**, **r**, and θ; if **CoordOn** format is selected, **r** and θ are displayed.

Tracing a Parametric Function

To begin a trace, select **TRACE** from the GRAPH menu (\underline{GRAPH} $\underline{F4}$). When you begin a trace, the trace cursor is on the first selected function at tMin.

• In **RectGC** format, moving the trace cursor updates the values of **x**, **y**, and **t**; if **CoordOn** format is selected, **t**, **x**, and **y** and are displayed.


In PolarGC format, moving the trace cursor updates x, y, r, θ, and t; if CoordOn format is selected, r, θ, and t are displayed. The x and y (or r and θ) values are calculated from t.

To move the trace cursor				
	Along the graph of the equation by increments or decrements of tStep	▶ or ◀		
	From one equation to another	▼ or ▲		

If you move the trace cursor beyond the top or bottom of the graph screen, the coordinate values at the bottom of the screen continue to change appropriately. If you have graphed a family of curves, \checkmark and \checkmark move through each curve before moving to the next parametric function.

Moving the Trace Cursor to a t Value

To move the trace cursor to any valid **t** value on the current equation, enter the number. When you enter the first digit, a **t=** prompt is displayed in the bottom-left corner. The value you enter must be valid for the current graph screen. When you have completed the entry, press [ENTER] to reactivate the trace cursor.

Using Zoom Operations

The GRAPH ZOOM menu items, except **ZFIT**, work the same in **Param** graphing as in **Func** graphing. In **Param** mode, **ZFIT** adjusts the graph screen in both the x and y directions.

QuickZoom is available in **Param** graphing; panning is not (Chapter 6).

You can enter an expression at the **t**= prompt.

In the example, the parametric equation is: xt1=95t cos 30° yt1=95t sin 30°-16t² Also, AxesOn graph format is set.

(The example on page 124 is similar to this example.)

The GRAPH ZOOM menu items affect only the x window variables (xMin, xMax, and xScI) and the y window variables (yMin, yMax, and yScI), except ZSTO and ZRCL, which also affect the t window variables (tMin, tMax, and tStep).

The GRAPH MATH Menu			GRAPH (MORE) [F1]				
MATH	DRAW	FORMT	STGDB	RCGDB				
DIST	dy/dx	dy∕dt	dx/dt	ARC	►	TANLN		

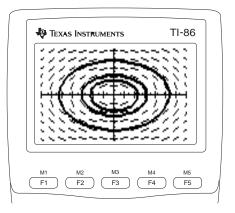
The other GRAPH MATH menu items are the same as described in Chapter 5.

- dy/dx Returns the derivative of yt divided by the derivative of xt
- dy/dt Returns the derivative of the yt equation at a point with respect to t
- dx/dt Returns the derivative of the xt equation at a point with respect to t

The distances calculated by **DIST** and **ARC** are distances in the rectangular coordinate plane.

At a point where the derivative is undefined, **TANLN** will draw the line, but no result is displayed or stored in **Ans**.

Evaluating an Equation for a Specified t


When the trace cursor is not active, the GRAPH menu item **EVAL** evaluates selected polar equations directly on the graph for a given value of **t**. **eval** in a program or from the home screen returns a list of x and y values in this form: ${xt1(t) yt1(t) xt2(t) xt2(t) ...}$.

Drawing on a Parametric Graph

The DRAW menu items work in **Param** graphing the same as in **Func** graphing. DRAW instruction coordinates in **Param** graphing are the **x**- and **y**-coordinate values of the graph screen.

Differential Equation Graphing

Defining a Differential Equation Graph	132
Entering and Solving Differential Equations	
Using Graph Tools in DifEq Graphing Mode	144

Chapters 8 and 9 each begin with an example; Chapter 10 has several differential equation examples throughout the chapter.

Defining a Differential Equation Graph

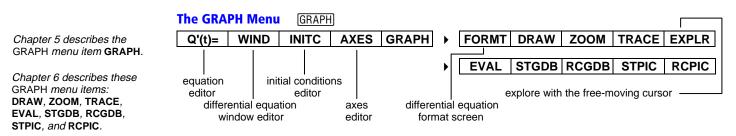
Most steps for defining a differential equation graph are similar to the steps for defining a function graph. This chapter assumes that you are familiar with Chapter 5: Function Graphing and Chapter 6: Graph Tools. This chapter details aspects of differential equation graphing that differ from function graphing.

Generally, DifEq graphing mode differs from other graphing modes in these ways.

- You must select the field format or accept the default before defining the equations (page 133).
- If an equation is higher than first order, you must convert it to an equivalent system of first-order differential equations, and then store the system in the equation editor (page 140 and page 142).
- When **FldOff** field format is selected, you must set initial conditions for each equation in the system (page 136).
- After you have selected the field format setting, you must select **AXES** from the GRAPH menu and enter axes information or accept the defaults (page 137).

Setting Differential Equation Graphing Mode

To display the mode screen, press 2nd [MODE]. To graph differential equations, you must select **DifEq** graphing mode before you set the format, enter equations, or edit window variable values. The TI-86 retains in memory separate format, equation, and window data for each graphing mode.


oordOr CoordOff xesOr AxesOff

> dOffi GridOn elOffi LabelOn

> > DirFld FldOff

Euler

Q'(D= WIND INITC

Setting the Graph Format

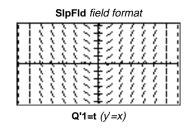
To display the format screen in DifEq graphing mode, select FORMT from the GRAPH menu (<u>GRAPH</u> <u>MORE</u> <u>F1</u>).

- The **RK Euler** and **SlpFld DirFld FldOff** format settings are available only in **DifEq** mode.
- The RectGC PolarGC, DrawLine DrawDot, and SeqG SimulG format settings are not available in DifEq graphing mode.
- All other format settings are the same as described in Chapter 5.

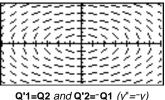
Solution Method Format

- **RK** Uses the Runge-Kutta method to solve differential equations more accurately than the **Euler** solution method format, but not as fast
- EulerUses the Euler method to solve differential equations; requires a number of iterations
between tStep values, so EStep= prompt replaces difTol= prompt on the window editor

The TI-86 retains independent format settings for each graphing mode.


Field Format

SIpFId	(slope field) Adds the slope field to the graph of only one first-order equation with t on the x-axis and a specified Q <i>n</i> equation on the y-axis
DirFld	(direction field) Adds the direction field to the graph of only one second-order equation with $\mathbf{Q}x^{\#}$ on the x-axis and $\mathbf{Q}y^{\#}$ on the y-axis
FldOff	(field off) Graphs all selected differential equations with t or Q1 on the x-axis, Q1 or Q2 on the y-axis, and no field; initial conditions must be defined for all equations (page 136)


The examples below show the basic slope and direction fields; all unspecified settings and values are defaults. To replicate these examples, reset defaults, enter the specified information in DifEq graphing mode, and then press [GRAPH] [F5].

Axes information is stored to **GDB** and **PIC** variables.

To remove menus from a graph, as shown in the examples, press CLEAR.

Displaying the Differential Equation Editor

To display the differential equation editor, select $\mathbf{Q'(t)}$ = from the GRAPH menu in **DifEq** graphing mode (<u>GRAPH</u> <u>F1</u>). The **DifEq** equation editor menu on the bottom line is the same as the **Func** mode equation editor menu, except that **t** and **Q** replace **x** and **y**.

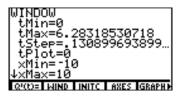
In this editor, you can enter and display a system of up to nine first-order differential equations, Q'I through Q'9, if sufficient memory is available. Equations are defined in terms of the independent variable t and/or Q'.

You can refer to another differential equation variable in a **DifEq** equation, as in **Q'2=Q1**. However, you cannot enter a list in a **DifEq** equation.

Ploti Plot2 NQ'1=	Plot3	
<u>Q'(t)=</u> WIND t Q		GRAPH

When the TI-86 calculates a differential equation system, it references all equations in the equation editor, regardless of selection status, starting at **Q'1**. You must define **Q'***n* equation variables consecutively, starting at **Q'1**. For example, if **Q'1** and **Q'2** are not defined, but you attempt to solve an equation defined in **Q'3**, the calculator returns an error.

The TI-86 allows you to analyze each equation independently. For example, you can enter **Q'1=t** and **Q'2=t**² and analyze each equation independently.


The TI-86 graphs only those selected equations that are appropriate for the specified axes.

- The default graph style is ^{*} (thick) in **DifEq** mode.
- "(shade above), (shade below), and (dot) are not available in DifEq graphing mode.

Setting the Graph Screen Window Variables

To display the differential equation window editor, select **WIND** from the GRAPH menu (<u>GRAPH</u> <u>F2</u>). **DifEq** has the same window variables as **Func** graphing mode, except:

- **xRes** is not available in **DifEq** mode.
- tMin, tMax, tStep, and tPlot are available in DifEq mode.
- difTol (RK) and EStep (Euler) are available in DifEq mode.

The values shown in the picture on page 135 are defaults in **Radian** mode. **x** and **y** settings correspond to the axes variables (page 137). ↓ indicates that **xScl=1**, **yMin=-10**, **yMax=10**, **yScl=1**, and **difTol=.001** (in **RK** format) or **EStep=1** (in **Euler** format) are beyond the screen.

tMin=0	Specifies the ${\bf t}$ value at which to begin evaluating within a graph screen
tMax=6.28318530718	Specifies the last \boldsymbol{t} value to evaluate within a graph screen
tStep=.1308969389958	Specifies the increment from one \boldsymbol{t} value to the next \boldsymbol{t} value
tPlot=0	Specifies the point at which plotting begins (ignored when t is an axis)
difTol=.001 (in RK format)	Specifies tolerance to help select step size for solving; must be $\geq 1\text{E-}12$
EStep=1 (in Euler format)	Specifies Euler iterations between tStep values; must be an integer >0 and ≤ 25

Setting the Initial Conditions

To display the initial conditions editor, select INITC from the GRAPH menu (\underline{GRAPH} F3). On this editor, you can set the initial value at **t=tMin** for each first-order equation in the equation editor.

INITIAL CONDITIONS tMin=0 • QI1= Q(Q)= WIND INITE AXES GRAPHIN

tMin is the first t value to evaluate. QI1 is the initial value of Qn. A small square next to an initial condition variable

indicates that a value is required for a defined differential equation.

You can enter an expression, list, or list name for initial conditions tMin and QI*n*. When you enter a list name, the elements are displayed when you press ENTER, \checkmark or \blacktriangle .

- If **SlpFld** or **DirFld** format is set, you need not specify initial conditions. The TI-86 returns the appropriate field with no specific solutions.
- If FldOff format is set, you **must** specify initial conditions.

Initial conditions information is stored to GDB and PIC variables.

tMax default is 2π . tStep default is $\pi/24$.

Setting the Axes

To display the axes editor, select **AXES** from the GRAPH menu in **DifEq** mode (GRAPH) [F4]). **x**= assigns a variable to the x-axis dTime= specifies a point in time (real number) **y**= assigns a variable to the y-axis fldRes= (resolution) sets number of rows (1 through 25)

At the x= and y= prompts, you can enter the independent variable t, as well as Q, Q', Qn, or $\mathbf{Q}'n$, where n is an integer ≥ 1 and ≤ 9 . If you assign t to one axis and $\mathbf{Q}n$ or $\mathbf{Q}'n$ to the other axis, only the equation stored to $\mathbf{Q}n$ or $\mathbf{Q}'n$ is plotted; other differential equations in the equation editor are not plotted; their selection status is ignored. **dTime** is only valid for second-order equations with t in either equation.

The axes editor and defaults for each field format are shown below. When SipFid field format is set, the x-axis is always t, so the AXES: SlpFld editor does not display x=t.

When **SIpFId** format is set:

When DirFld format is set:

When FldOff for	mat is set:
-----------------	-------------

AXES 9=Q fld	: Sli 1 Res=1	∍F1d 15		
Q'(t)=	WIND	INITC	AXES	GRAPH

AXES: D: x=Q1 y=Q2 dTime=0 fldRes=	irFld 9 =15		
Ritter MIND	INITC	AXES	GRAPH

FldOff x=t <u>ч=0</u>

Differential Equation Graphing Tips

- Since the TI-86 plots slope fields and direction fields before it plots equations, you can press [ENTER] to pause the graph and view the fields with no solutions plotted.
- If you do not specify initial conditions for the equations assigned to the axes, the TI-86 simply draws the field and stops. This gives you access to both the field format options and the interactive initial conditions simultaneously.

Axes information is stored to GDB and PIC variables.

The Built-In Variable fldPic

Stat plot and screen drawings are not stored to fldPic.

As the TI-86 plots a field, it stores the field and any displayed label, axes, or cursor coordinate information to the built-in variable **fldPic**.

These actions do not update fldPic.

- Switching the solving method format from **RK** to **Euler** or from **Euler** to **RK**
- Entering or editing any initial condition variable value (QI1 through QI9)
- Editing a value for difTol, EStep, tMin, tMax, tStep, or tPlot
- Changing a graph style

These actions update fldPic.

- Editing an equation in the equation editor
- Re-assigning an axis, editing a dTime value, or editing a fldRes value
- Using a GRAPH ZOOM menu item
- Changing a format setting other than solving method format
- Editing a value for xMin, xMax, xScl, yMin, yMax, or yScl

Displaying the Graph

To plot the differential equations, you can select **GRAPH**, **TRACE**, **EVAL**, or **STGDB**, or a **DRAW**, **ZOOM**, or **STPIC** operation, from the GRAPH menu. The TI-86 solves each equation from tMin to tMax. If t is not an axis, it plots each point beginning at tPlot; otherwise, it begins at tMin. As a graph is plotted, the variables x, y, t, and Qn are updated.

tStep affects trace resolution and graph appearance, but not the accuracy of the trace values. **tStep** does not determine the step size for solving; using the **RK** algorithm (Runge-Kutta 2-3) determines the step size. If the x-axis is **t**, setting **tStep**<(**tMax** - **tMin**)/126 increases plotting time without increasing accuracy.

Entering and Solving Differential Equations

In **Func** graphing mode, **x** is the independent variable and **y** is the equation variable. To avoid conflict between **Func** equations and **DifEq** equations on the TI-86, **t** is the independent variable and **Q**'*n* is the equation variable in **DifEq** graphing mode. Therefore, when you enter an equation in the differential equation editor, you must express it in terms of **t** and **Q**'*n*.

For example, to express the first-order differential equation $y'=x^2$, you would substitute t^2 for x^2 and Q'1 for y', and then enter Q'1= t^2 in the equation editor.

Graphing in SlpFld Format

- Display the mode screen and set DifEq graphing mode.
- 2 Display the format screen and set **SlpFld** field format.
- Display the equation editor and store the differential equation y'=x², substituting Q'1 for y' and t for x. Clear any other equations.
- Display the initial conditions editor and enter the initial conditions. A small square indicates that an initial condition is required.

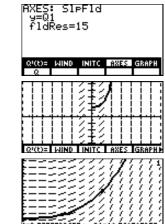
[2nd] [MODE] 💌 💌 💌
GRAPH MORE F1 💌
F1 F1 x ²

[2nd] [M3] 3

In the example, the default window variable values are set initially.

ß

6


ด

8

Ø

In SlpFld field format, x=t is always true; y=Q1 and fldRes=15 are the default axes settings.

Display the axes editor and enter the F4 F1 **1** equation variable for which you want to solve. (Do not set **y=Q**.) Accept or change fldRes (resolution). [2nd] [M5] Display the graph. With the default window variable values set, the slope fields for this graph are not very illustrative. Change the window variables **xMin**, **xMax**, F2 - - - 0 **-** 5 **- -** 0 **-** 20 yMin, and yMax. Select **TRACE** from the GRAPH menu to re-MORE F4 plot the graph and activate the trace cursor. Trace the solution. The trace cursor \blacktriangleright and \blacksquare

Transforming an Equation into a First-Order System

coordinates for t and Q1 are displayed.

On the TI-86, to enter a second-order or higher (up to ninth-order) differential equation, you must transform it to a system of first-order differential equations. For example, to enter the second-order differential equation y''= -y, you must transform it to two first-order differential equations, as shown in the chart below.

Differentiate	Define the variables as	And then substitute:
Q'1 =y'	Q1=y	Q'1=Q2 (since Q'1 =y'= Q2)
Q'2 =y''	Q2 =y'	Q'2=-Q1

Graphing in DirFld Format

- Display the mode screen and set DifEq graphing mode.
- 2 Display the format screen and set DirFld graphing format.
- Display the equation editor and store the transformed system of differential equations for y''=-y to the equation editor, substituting Q1 for y and Q2 for y'.
- Display the initial conditions editor and enter the initial conditions if you want a specific solution. To enter a list of initial conditions, use { and } from the LIST menu.
- Display the axes editor and enter the two equation variables for which you want to solve. You must omit the prime mark (').
- 6 Accept or change fldRes (resolution).
- Select ZSTD from the GRAPH ZOOM menu to set the standard window variable values and display the graph.
- 8 Clear the GRAPH menu from the screen.

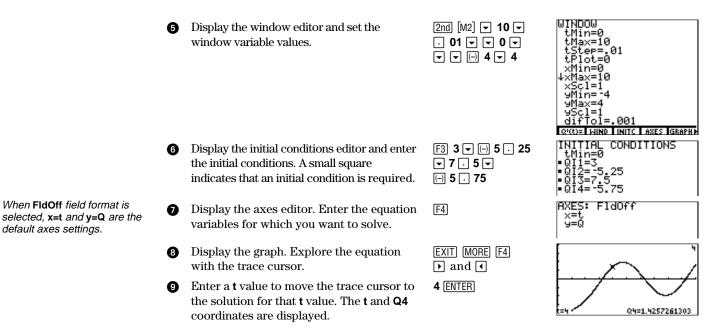
2nd [MODE] • • • • • • • • ENTER GRAPH [MORE] [F1] • • • • • • ENTER F1] F2 2 • [-] F2 1	Func Pol Param DITATE Dec Bin Oct Hex Restar CylV SphereV SIpFId DITATE FldOff R(D) INITC FACES IGRAPHE Plot Plot2 Plot3 Q'18Q2 Q'28-Q1
2nd [M3] 2nd [LIST] F1 1, 2, 5 F2 F1 2nd[π], 4 ; 5 75 F2 2nd [M4] F1 1 \checkmark F1 2	Q*CDE WIND INITE ARES GRAPH t Q INSF DELF SELCT; INITIAL CONDITIONS thine0 QII=(1,2,5) QI2=(π,4,5.75) Q*CDE WIND INITE ARES Q*CDE WIND INITE ARES GRAPH NAMES EDIT DPS Q*CDE WIND INITE ARES GRAPH NAMES EDIT DPS RXES: DirF1d X=Q1 y=Q2 dTime=0 fldRes=15
EXIT (MORE) (F3) (F4) (CLEAR)	OVCOS ANNO INITO AREAS GRAPH

In **DifEq** graphing mode, t is the independent variable and \mathbf{Q} 'n is the dependent variable, where $n \ge 1$ and ≤ 9 .

In the example, the default window variable values are set initially.

When DirFld field format is selected, x=Q1, y=Q2, dTime=0, and fldRes=15 are the default axes settings. Since t is not part of the equation, dTime is ignored.

Graphing a System of Equations in FldOff Format


For this example, you must transform the fourth-order differential equation $y^{(4)}-y=e^{-x}$ into an equivalent system of first-order differential equations, as shown in the chart below.

Differentiate	Define the variables as	And then substitute:
	t=x	
Q'1 =y'	Q1=y	Q'1=Q2 (since Q'1 =y'= Q2)
Q'2 =y''	Q2 =y'	Q'2=Q3
Q'3 =y'''	Q3=y''	Q'3=Q4
$\textbf{Q'4}{=}y^{(4)}$		$Q'4=e^{-t}+Q1$ (since $Q'4=y^{(4)}=e^{-x}+y=e^{-t}+Q1$)

- Display the mode screen and set **DifEq a** graphing mode.
- Display the format screen and set FldOff A field format.
- Display the equation editor and store the ß transformed system of differential equations for $y^{(4)} = e^{-x} + y$, substituting as shown in the chart.
- Deselect Q'3, Q'2, and Q'1 to plot 4 Q'4=e^(-t)+Q1 only.

2nd [MODE] V V V V V ENTER GRAPH MORE F1 V V V V V V V ENTER	Func Pol Param Diffies Dez Bin Oct Hex Regul CylV SphereV SIPFId DirFId (DIGDIF) QVCD=TWIND INITC AXES (GRAPH)
F1 F2 2 ▼ F2 3 ▼ F2 4 ▼ 2nd [e ^x] ((-) F1) + F2 1	Plot1 Plot2 Plot3 Q'1=Q2 Q'2=Q3 Q'3=Q4 \Q'48e^(-t)+Q1
▲ F5 ▲ F5 ▲ F5	DELCOME WIND INITE AXES GRAPH

In DifEq graphing mode, t is the independent variable and **Q**'*n* is the equation variable, where n > 1 and < 9.

To paste ' to the home screen, you can select it from the CHAR MISC menu or from the CATALOG.

Due to TI-86 system requirements, you must express Q1(3) as Q'1(3) on the calculator.

QuickZoom is available in DifEq graphing; panning is not (Chapter 6).

Solving a Differential Equation for a Specified Value

On the home screen in **DifEq** graphing mode, you can solve a differential equation stored to a specified independent variable value or expression. The syntax is: **Q**'*n*(*value*).

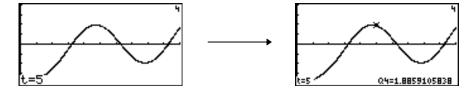
- The equation must be stored to a DifEq equation variable (Q'1 through Q'9).
- The initial conditions must be defined.
- The result sometimes varies, depending on the axes settings.

Using Graph Tools in DifEq Graphing Mode

The Free-Moving Cursor

The free-moving cursor works in DifEq mode as it does in Func graphing. The cursor coordinate values for **x** and **y** are displayed, and the variables are updated.

Tracing a Differential Equation


To begin a trace, select **TRACE** from the GRAPH menu (<u>GRAPH</u> <u>MORE</u> <u>F4</u>). The trace cursor appears on the first equation at or near **tPlot** (or **tMin**, if **t** is an axis).

The trace coordinates displayed at the bottom of the screen reflect the axes settings. For example, if x=t and y=Q1, then t and Q1 are displayed. If t is not an axis, three trace values are displayed. If t is an axis, only t and the variable designated as the y-axis are displayed.

The trace cursor moves in increments or decrements of **tStep**. As you trace an equation, the coordinates are updated and displayed. If the cursor moves off the screen, the coordinate values displayed at the bottom of the screen continue to change appropriately.

Moving the Trace Cursor to a t Value

To move the trace cursor to any valid **t** value on the current equation, enter the number. When you enter the first digit, a **t=** prompt is displayed in the bottom-left corner. The value you enter must be valid for the current graph screen. When you have completed the entry, press ENTER to reactivate the trace cursor.

Drawing on a Differential Equation Graph

The GRAPH DRAW menu items work the same in **DifEq** graphing mode as in **Func** graphing. DRAW instruction coordinates are the x- and y-coordinates of the graph screen.

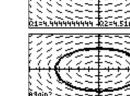
DrEqu is available only in DifEq mode. DrInv is not available in DifEq graphing mode.

Drawing an Equation and Storing Solutions to Lists

To draw a solution on the current graph screen and store the results to specified list names, the syntax is:

DrEqu(xAxisVariable,yAxisVariable[,xList,yList,tList])

xAxisVariable and *yAxisVariable* specify the axes on which the drawing is based; they may differ from the current graph screen's axes settings.


Values for t and Q are displayed on the graph to the right because x=t and y=Q graph axes are selected. DrEqu(does not store values *xList*, *uList*, and *tList* are optional list names to which you can store the solutions **x**, **y**, and to x, y, or t. t. You then can display the lists on the home screen or in the list editor (Chapter 11). Use the free-moving cursor to select initial conditions. You cannot trace the drawing. However, you can plot xList, yList, or tList as a stat plot after you draw the equation, and then trace them (Chapter 14). Also, you can fit statistical regression models to the lists (Chapter 14). In the example, the default Func Pol Param **())))** NGC Bin Oct Hex Display the mode screen and set **DifEq** 2nd [MODE] - a window variable values are graphing mode. ► ► ► ENTER Recill CylU SphereU set. If necessary. select SlpFid Diago FidOff **ZSTD** from the GRAPH ZOOM Display the format screen and set DirFld GRAPH [MORE] [F1] -Ø menu. field format. Q'(L)= WIND INITC AXES GRAPH ENTER Plot1 Plot2 Plot3 If you select FldOff field Display the equation editor and store the F1 F2 2 - (-) F2 1 ล NQ'1∎Q2 NQ'2∎-Q1 format, you must enter initial equations Q'1=Q2 and Q'2=-Q1. (Delete conditions before vou use all other equations.) DrEau(. DrEqu(EXIT EXIT GRAPH 4 Remove the format screen, and then select DrEqu from the GRAPH DRAW menu. MORE F2 F1 DrEqu(is pasted to the home screen. DrEqu(Q1,Q2,LX,LY,LT [ALPHA] [Q] 1, 6 Assign variables to the x- and y-axes. [ALPHA] [Q] 2, [ALPHA] [L] [ALPHA] [X] Specify list names to which to store the 6 , ALPHA L ALPHA solution lists for **x**. **v**. and **t**. [Y], ALPHA][L] ALPHA T

In the example, since no initial conditions were set, the equation in **Q'1** is not plotted.

- Display the graph screen and plot the direction field.
- Move the free-moving cursor to the initial condition coordinates you want.
- Draw the solution. The solution lists for x, y, and t are stored to LX, LY, and LT. The Again? prompt is displayed and ALPHA-lock is on for [Y] and [N] only.
 - To use DrEqu(again with new initial conditions, press [Y], →, ▼, ◀, or ▲.

ENTER

ENTER

To leave DrEqu(and display the GRAPH menu, press [N] or EXIT.

Using ZOOM Operations

The GRAPH ZOOM menu items, except **ZFIT**, work the same in **DifEq** graphing mode as in **Func** graphing mode. In **DifEq** graphing mode, **ZFIT** adjusts the graph screen in both the x direction and y direction.

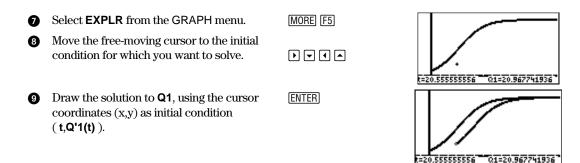
The ZOOM menu items affect only the x (xMin, xMax, and xScl) and y (yMin, yMax, and yScl) window variables. The t window variables (tMin, tMax, tStep, and tPlot) are not affected, except with ZSTD and ZRCL. You may want to edit the t window variables to ensure that sufficient points are plotted. ZSTD sets difTol=.001 and t and Q as the axes.

Drawing Solutions Interactively with EXPLR

- Display the mode screen and set DifEq graphing mode.
- 2 Display the format screen and set **FldOff** field format.
- Display the equation editor and store the equation Q'1=.001Q1(100-Q1). (Delete all other equations.)
- Set the axes to **x=t** and **y=Q1**.
- Display the window editor and set the window variable values.

GRAPH MORE F1 V VVVV VV ENTER
F1 . 001 F2 1 (100 - F2 1)
2nd [M4] 🗨 🕨 1
2nd [M2] 🗨 100 🖵 2 🔍 🖵 🖵 100 🖳 🖳 🐨 110

Rectil CylV SphereV
SI⊳Fld DirFld ⊒IC∪I¥ i
Q'(t)= WIND INITE AXES IGRAPHIN
Ploti Plot2 Plot3 NQ'18.001 Q1(100-Q1)∎
AXES: FldOff x=t y=Q1∎
WINDOW tMin=0 tMax=100 tStep=.2 tPlot=0 tPlot=0
×Min=-10 ↓×Max=100 ×Scl=1 9Min=-10 9Max=110 9Scl=1 difTol=.001
difTol=.001 Q(C)= WIND INITE AXES GRAPHE
INITIAL CONDITIONS


tMin=0 ■QI1=10

Func Pol Param 💵

Display the initial conditions editor and enter the initial condition.

F3 10

To continue drawing more solutions, move the free-moving cursor and then press ENTER.

To stop using **EXPLR**, press **EXIT**.

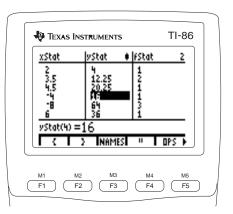
If SIpFId or DirFId is set, the axes are set to specific solutions automatically.

- ♦ For SlpFld, x=t and y=Q1 are set.
- ♦ For DirFld, x=Q1 and y=Q2 are set.

If the axes are set to a specific solution **t**, **Q***n*, or **Q**'*n*, that solution is drawn.

If the axes are not set to a specific solution and t is one variable and Q is the other, Q1 is drawn.

If both axes are set to a **Q** variable, executing **EXPLR** results in an error.


Evaluating Differential Equations for a Specified t

When the trace cursor is not active, the GRAPH menu item **EVAL** evaluates currently selected differential equations Qn for a specified value of **t**, tMin \leq t \leq tMax. You can use it directly on the graph. In a program or from the home screen, eval returns a list of **Q** values.

When DirFld or SlpFld field format is set, you must specify initial conditions before using EVAL.

11 Lists

Lists on the TI-86	152
Creating, Storing, and Displaying Lists	153
The List Editor	156
Using List Operations	159
Using Mathematical Functions with Lists	161
Attaching a Formula to a List Name	

The length and number of lists you can store in the TI-86 is limited only by memory capacity.

If you enter more than one list in an equation or expression, all lists must have the same number of elements.

Lists on the TI-86

A list is a set of real or complex elements, as in {5,-20,13,9}. On the TI-86, you can:

- Enter a list directly in an expression (page 153)
- Enter a list and store it to a list name (variable) (page 154)
- Enter a list name in the list editor (page 156), and then enter elements directly or use an attached formula to generate them automatically (page 161)
- ◆ Collect data with the Calculator-Based LaboratoryTM (CBL 2TM/CBLTM) or Calculator-Based RangerTM (CBR) and store it to a list name on the TI-86 (Chapter 18)
- Create lists dynamically using the LIST OPS menu item seq (page 159)

On the TI-86, you can use a list:

- As a set of values for an argument in a function to return a list of answers (Chapter 1)
- As part of an equation to graph a family of curves (Chapter 5)
- As a set of statistical data to analyze with statistical functions and plot on the graph screen (Chapter 14)

The LIST	Menu	2nd [LIST]				
{	}	NAMES	ED	DIT	OPS	
l open brace	,	l list names		li	l st operatio	ns
opon blace		menu		"	menu	
(close brad	се	list e	ditor		

When you enter a list, { (open brace) specifies the beginning and } (close brace) specifies the end. To paste { or } to the cursor location, select either from the LIST menu.

The LIST NAMES menu shown here has no user-created list names.

Chapter 14 describes fStat, xStat, and yStat.

The LIST	NAMES	ivienu l	נוסו בוסו	[F3]
{	}	NAMES	EDIT	OPS
fStat	xStat	yStat		

The LICT NAMES Menu

Each user-created list name is added to the LIST NAMES menu and VARS LIST screen. List names, including **fStat**, **xStat**, and **yStat**, are sorted in alphanumeric order in both places.

Creating, Storing, and Displaying Lists

Entering a List Directly in an Expression

To enter a list directly, the syntax is: {*element1,element2,...,element n*}

5*(Enter any part of the expression that precedes 5 🖂 a the list. Select { from the LIST menu to begin the list. [2nd] [LIST] [F1] Ø NAMES FDIT 5*(-16,4,4²,3π)∎ 3 Enter each list element, separating each from (-) **16**, **4**, the other with a comma. Each list element can $4x^{2}$, 3 $[2nd] [\pi]$ be an expression. F2 Select } from the LIST menu to end the list. A EDIT OPS 5*{-16,4,42,3π}/4 Enter any part of the expression that follows ÷ 4 ß (-2015 20 11.7809724 the list. Evaluate the expression. Any elements that are [ENTER] 6 expressions are evaluated first.

An ellipsis (...) indicates that a list continues beyond the screen. Use > and < to scroll the list.

Creating a List Name by Storing a List

To store a list, the syntax is: $\{element1, element2, \dots, elementn\} \rightarrow listName$

You need not enter the close brace (}) when you use ST0► to store a list name.

To delete a list name from memory, use the MEM DELETE:LIST screen (Chapter 17).

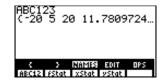
The TI-86 distinguishes between uppercase and lowercase letters in list names. For example, ABC123. Abc123. and abc123 are three different list names.

- Enter a list directly. (To store a result expressed as a a list and currently stored in **Ans**, as shown in the example, begin these steps at step 2.)
- Paste \Rightarrow to the cursor location. ALPHA-lock is on. ค
- Enter the list name. Either select a name from the 6 LIST NAMES menu or directly enter a name one to eight characters long, starting with a letter.
- Store the list to the list name. A

Displaying List Elements Stored to a List Name

- Enter the list name on the home screen: either select it from the LIST NAMES menu or enter the characters.
- Display the list elements. 0

above)	
ST0►	
[A][B][C] ALPHA] 1 2 3	5*(-16,4,42,3π)/4 (-20 5 20 11.7809724… Ans+ABC123 (-20 5 20 11.7809724…
ENTER	C 2 NAMES EDIT OPS


(steps 2

[2nd] [LIST] [F3]

F₁

(ENTER)

through 5

Displaying or Using a Single List Element

To display or use a single list element, the syntax is: *listName(element#)*

- Enter the list name; either select it from the a LIST NAMES menu or enter the characters
- In parentheses, enter the element's place 2 number in the list.
- Display the list element. ß

Storing a New Value to a List Element

To store a value to a current element or one element beyond the end of a list, the syntax is: value >listName(element#)

[F1]

(4)

[ENTER]

F₁

- Enter the value to be stored in a current list a element or one element beyond the end.
- Paste \rightarrow to the cursor location. 0
- Enter the list name; either select it from the 6 LIST NAMES menu or enter the characters.
- Enter the element's place number in **A** parentheses. (In the example, 5 is one beyond the current dimension of ABC123).
- **6** Enter the new value to the element number. $(\sqrt{18}$ is evaluated and added as the fifth element.)

[2nd] [√] 18	√18÷
STO► F1	
(100 ALPHA) (100 A	√18→ABC123(5) 4.24264068712
(ENTER)	C > NAMES EVIT OPS ABC12 (Stat XStat VStat)

ABC123(4) [2nd] [LIST] [F3] 11.780972451 NAMES EDIT

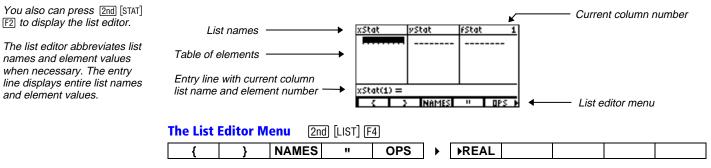
value can be an expression.

listName(element#) is valid

as part of an expression.

element# is > 1 and < the

dimension of the list.


Complex List Elements

A complex number can be a list element. If at least one list element is a complex number, all elements in the list are displayed as complex. ($\sqrt{-4}$ results in a complex number.)

{1,2,J-4} {(1,0)	(2,0)	(0,2)}

[2nd] [LIST] [F4] The List Editor

The list editor is a table where you can store, edit, and view up to 20 lists that are in memory. Also, you can create list names and attach formulas to lists in the list editor.

The list editor menu items {. }, NAMES, and OPS are identical to the LIST menu items (page 152).

...

and element values.

Designates the beginning and end of a formula to be attached to a list name

▶REAL Converts the current list to a list of real numbers

To use LIST OPS menu items (or any other functions or instructions) in the list editor, the cursor location must be appropriate for the result. For example, you can use the LIST OPS menu item **sortA** when a list name is highlighted but not when an element is highlighted.

Creating a List Name in the Unnamed Column

- Display the list editor.
- 2 Move the cursor to the unnamed column (column 4). The **Name=** prompt is displayed in the entry line. ALPHA-lock is on.
- Enter the list name. The list name is displayed at the top of the current column. In the entry line, a list name prompt is displayed. The name becomes a LIST NAMES menu item and a VARS LIST screen item.

Inserting a List Name into the List Editor

- 1 Move the cursor to column **3**.
- Insert a new, unnamed column. List names shift right, clearing column 3. The Name= prompt and LIST NAMES menu are displayed.
- Select ABC12 from the LIST NAMES menu to insert the list name ABC123 into column 3. Elements stored to ABC123 fill the column 3 table of elements. The full value of all ABC123 elements is displayed in the entry line.

[2nd] [INS]

F1 ENTER

Name=X\		
ABC12 XY	Z FStat :	xStat yStat
yStat	fStat	য়য়ন দ
XYZ =		
	NAMES	U DPS D

yStat		fStat
Name=AE	00127	
нане-пс	0120	
	Z FStat :	rStat yStat
		rstat ystat Fstat
ABC12 XY		
ABC12 XY	1806123	
ABC12 XY	7800000 -20 5 20 11.78097	
ABC12 XY	1304048 -20 5 20	
ABC12 XY yStat	12000483 -20 5 20 11.78097 4.242641	fStat
ABC12 XY yStat	12000483 -20 5 20 11.78097 4.242641	

After memory is reset, xStat, yStat, and fStat are stored to columns 1, 2, and 3. Resetting defaults does not affect the list editor.

To move from the list name in column 1 to the unnamed column, press ().

If all 20 columns have list names, you must remove a list name to make room for the unnamed column.

To cancel the list name insertion, press CLEAR.

If a formula were attached to ABC123, the formula would be displayed in the entry line instead of the list shown in step 3 (page 162.) To cancel any editing and restore the original element at the cursor. press [CLEAR] ENTER].

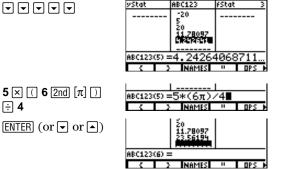
You can enter an expression as an element.

Displaying and Editing a List Element

- Move the cursor onto the fifth element of ABC123. In the entry line, the list name, the element number in parentheses, and the element's full value are displayed.
- Switch to edit-element context and edit the Ø element in the entry line.
- Enter the edited element. Any expression 6 is evaluated and the value is stored to the current element.

Deleting Elements from a List

To delete a single element from a list, move the cursor onto the element and press [DEL]. The element is deleted. You can clear all elements from a list in any of three ways.


÷ 4

- In the list editor, press [+] to move the cursor onto a list name and press [CLEAR] [ENTER]. ٠
- In the list editor, move the cursor onto each element, and then press DEL one by one. ٠
- On the home screen or in the program editor, enter **0>dimL** *listName* to set the ٠ dimension of *listName* to **0** (A to Z Reference).

Removing a List from the List Editor

To remove a list from the list editor, move the cursor onto the list name and then press [DEL]. The list is not deleted from memory; it is only removed from the list editor.

$\overline{}$

You can remove all user-created lists from the list editor and restore list names xStat, yStat, and fStat to columns 1, 2, and 3 in either of two ways.

- Use **SetLEdit** with no arguments (page 161).
- Reset all memory (Chapter 17). Resetting defaults does not affect the list editor.

Using List Operations

he LIST	OPS (Op	erations)	Menu	2nd [LIST] F5					
{	}	NAMES	EDIT	OPS						
dimL	sortA	sortD	min	max	•	sum	prod	seq	li⊁vc	vc⊧li
					i					
						Fill	aug	cSum	Deltal	Sortx
					i				_	
						Sorty	Select	SetLE	Form	

For all LIST OPS menu items except Fill(and sometimes dimL, a directly entered list ({element1,element2,}) is valid for the list argument. SortA and SortD sort complex lists based on magnitude (modulus).	dimL <i>list</i>	Returns the dimension of (or number of elements in) list
	#ofElements →dimL listName	Creates $listName$ as a list that is $\#ofElements$ in length; each element is a ${f 0}$
	#ofElements →dimL listName	Redimensions an existing <i>listName</i> ; previously entered elements within the new dimension remain; each new list element is a 0 ; each element in the old list that is outside the new dimension is deleted
	sortA list	Sorts <i>list</i> elements in ascending order, from low to high values
	sortD list	Sorts <i>list</i> elements in descending order, from high to low values

For a complex list, min or max returns the smallest largest magnitude (modu

For a complex list, min or	mm(<i>usu</i>)	1
max returns the smallest or	max(list)	I
largest magnitude (modulus).	sum list	I
		a
	prod <i>list</i>	I
	seq(expression,variable,	I
	begin,end[,step])	0
		ľ
	li▶vc <i>list</i>	(
	li≽vc {element1,element2,}	
	vc≽li vector	(
	vc≽li [element1,element2,]	
	Fill(number,listName)	S
	aug(listA,listB)	(
		l
	cSum(<i>list</i>)	I
		e
Selecting Deltal from the	Deltalst(<i>list</i>)	I
menu pastes Deltalst(to the cursor location.		e
	Sortx [ListName,ListName,	Ι
	frequencyListName]	Ċ
		Ľ
For Sortx and Sorty, both	Sorty [<i>xListName</i> , <i>ListName</i> ,	Ι
lists must have the same	frequencyListName]	Ċ
number of elements.		Į

min(list)

Returns the smallest element of a real or complex *list*

Returns the largest element of a real or complex *list*

Returns the sum of all the elements of a real or complex *list*, adding from the last element to the first

Returns the product of all the elements of a real or complex *list*

Returns a list in which each element is the result of the evaluation of *expression* with regard to *variable* for the values ranging from *begin* to *end* in intervals of *step* (*step* can be negative)

Converts a real or complex *list* to a vector

Converts a real or complex *vector* to a list

Stores a real or complex *number* to every element of *listName* (augment) Concatenates the real or complex elements of listA and listB

Returns a list of the cumulative sums of real or complex *list* elements, starting with the first element and proceeding to the last

Returns a list containing the differences between consecutive elements for all elements in a real or complex list

In ascending order of **x** elements, sorts *xListName*, sorts **x** and **y** data pairs, and optionally, their frequencies, in *xListName*, *uListName*, and *frequencyListName*; **xStat** and **yStat** are defaults

In ascending order of **y** elements, sorts *xListName*, sorts **x** and **y** data pairs, and optionally, their frequencies, in *xListName*, *uListName*, and *frequencuListName*: **xStat** and **vStat** are defaults Select(xListName, yListName)

Selecting SetLE from the menu pastes SetLEdit to the cursor location.

You can create new list names as SetLEdit arguments.

SetLEdit [column1ListName, column2ListName,..., column20ListName]

Form("formula",listName)

Selects one or more specific data points from a scatter plot or xyLine plot (only), then stores the selected data points to *xListName* and *yListName* (Chapter 14)

Sets up the list editor; **SetLEdit** with one to 20 *ListNames* loads them in the specified order; **SetLEdit** with no arguments removes all current list names from the list editor and enters the default lists **xStat**, **yStat**, and **fStat** to columns 1, 2, and 3

Attaches *formula* to *listName*; *formula* resolves to a list, which is dynamically stored and updated in *listName* (page 162)

Using Mathematical Functions with Lists

You can use a list as a single argument for many TI-86 functions; the result is a list. The function must be valid for every element in the list; however, when graphing, undefined points do not result in an error.

When you use lists for two or more arguments in the same function, all lists must have the same number of elements (equal dimension). Here are some examples of a list as a single argument.

{1,2,3}+10 returns {11 12 13}
{5,10,15}* {2,4,6} returns {10 40 90}
3+{1,7,(2,1)} returns {(4,0) (10,0) (5,1)}

 $\sqrt{4,16,36,64}$ returns {2 4 6 8} sin {7,5} returns {.656986598719 -.958924274663} {1,15,36}<19 returns {1 1 0} You cannot edit an element of a list created from an attached formula unless you first detach the formula from the list name.

When you include more than one list name in an attached formula, each list must have the same dimension.

Begin these steps on a blank line on the home screen.

To view a formula attached to a list name, use the list editor (page 157).

Attaching a Formula to a List Name

You can attach a formula to a list name so that the formula generates a list that is stored and dynamically updated in the list name.

- When you edit an element of a list that is referenced in the formula, the corresponding element in the list to which the formula is attached is updated.
- When you edit the formula itself, all elements in the list to which the formula is attached are updated.

To attach a formula to a list name on the home screen or in the program editor, the syntax is: **Form(***"formula"*,*listName***)**

When you enter a new list name as the second argument for **Form(**, the list name is created and stored in the LIST NAMES menu and VARS LIST screen upon execution.

0	Store elements to a list name.	2nd [LIST] [F1] 1 , 2 , 3 [F2] [STO•] [L] (ALPHA) 1 [ENTER]	(1,2,3)→L1 Form(∎
0	Select Form from the LIST OPS menu; Form(is pasted to the cursor location.	(F5) (MORE) (MORE) (MORE) (F4)	C 3 NAMES EDIT OPS Sorty Select SetLe Form
3	Enter a formula in quotation marks.	(2nd) [STRNG] (F1) (ALPHA) [L] 1 (+) 10 (F1)	(1,2,3)+L1 Form("L1+10",ADD10) Done
4	Enter a comma and then the list name to which you want to attach the formula.	, (Alpha) (Alpha) (A) [D] [D] (Alpha) 10 ()	
6	Attach the formula to the list name.	[ENTER]	

Comparing an Attached List with a Regular List

To see the differences between an attached list and a regular list, follow these steps. The example below builds on the example above for attaching a formula to a list. Notice that the formula in step 1 below is not attached to LX because it is not set off by quotation marks.

- Generate a regular list by storing the a expression L1+10 to the list name LX.
- Change the second element in L1 to -8 and 0 display the edited list.
- Compare the elements of the regular list LX ß with ADD10, to which the formula L1+10 is attached. Notice that element 2 of LX is unchanged. Meanwhile, element 2 of ADD10 has been recalculated, since element 2 of L1 has been edited.

Using the List Editor to Attach a Formula	Using	the	List	Editor	to	Attach	а	Formula
---	-------	-----	------	---------------	----	--------	---	---------

- Display the list editor.
- Highlight the list name to which you want to ค attach the formula.
- Enter the formula in quotation marks. ß

ALPHA [L] 1 + 10 STO [L] [X] ENTER	L1+10+LX	<11	12	13)
(L1+10→LX -8→L1(2)∶L1			13) 33)
(2nd) [LIST] [F3] [F2] [ENTER] [F4] [ENTER]	ADD10 LX ABC12 ADD10 L3	(11		13) 13) OPS

xStat	vStat	fStat	
-2			
6			
1			
yStat ="4	4*xStat'	"	
< >	NAMES		OPS
FStat XSI	tat yStat		

If other list names are stored on the LIST NAMES menu. pressing F1 and F3 may not paste ADD10 and LX to the home screen as shown.

In the example, only fStat, xStat. and vStat are on the LIST NAMES menu and xStat={-2,9,6,1,-7}.

The attached formula must be set off by quotation marks. The list editor displays a formula-lock symbol next to each list name that has a formula attached to it.

- 4 Attach the formula and generate the list.
 - The TI-86 calculates each list element.
 - A lock symbol is displayed next to the list name to which the formula is attached.

xStat	yStat 🔹	fStat				
-2 9						
6	24					
1,	-28					
·						
yStat(1) = -8						
{ }	NAMES	" OPS N				

To edit an attached formula, press ENTER in step 3, and then edit the formula.

Using the List Editor With Attached-Formula Lists

When you edit an element of a list referenced in an attached formula, the TI-86 updates the corresponding element in the list to which the formula is attached.

xStat	yStat 🔹	fStat 1	xStat	ySta	•	fStat	1
5 10 15 20	10 20 30 40		-33 50 15 20	-66 20 30 40			
xStat(1) = ·	33		xStat(2) =1	0			
6 2 FStat XSt	NAMES at yStat	" OPS	{ } FStat XSt			"	OPS

When you edit or enter elements of a displayed list in any of the three current list editor columns while an attached-formula list also is displayed, the TI-86 takes slightly longer to execute the edit or entry. To reduce this effect, move lists with formulas off the current three-column display, either by scrolling columns to the left or right or by rearranging the list editor.

(ENTER)

Executing and Displaying Attached Formulas

An attached formula must resolve to a list upon execution. Some examples of formulas that resolve to a list are "5*xStat", "seq(x,x,1,10)", and " $\{3,5, -8,4\}^2/10$ ". Execution of the formula occurs when you attempt to display the list to which the formula is attached. Also, the formula is executed whenever a list referenced by the formula is modified — whether on the home screen, in the list editor, or in a program.

You can successfully attach to a list a formula that does not yet resolve to a list. For example, you can attach "**5***x**Stat**" to the list name **BY5** with no elements stored to **xStat**. However, if you attempt to display **BY5** when **xStat** has no elements, an error occurs.

When you attach such a formula to a list name in the list editor, the formula is successfully attached, but an error occurs. This is because the list editor attempts to execute the formula immediately after attaching it to the list name.

To view the list editor again, you must return to the home screen and either enter something to cause the formula to resolve to a list or remove the attached-formula list from the list editor using the LIST OPS menu item **SetLE** (page 161).

Handling Errors Related to Attached Formulas

On the home screen, you can attach to a list a formula that references another list that has no elements (dimension is **0**; page 161). However, you cannot display the attached-formula list in the list editor or on the home screen until you enter at least one element to the list that the formula references.

Tip: If an error menu is returned when you attempt to display an attached-formula list in the list editor, you can select **GOTO**, write down the formula that is attached to the list name, and then press [CLEAR] [ENTER] to detach (clear) the formula. Then you can use the list editor to find the source of the error. After making the appropriate changes, you can reattach the formula to the list name.

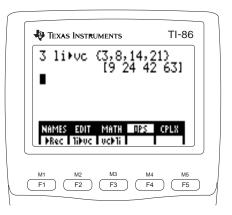
If you do not want to clear the formula, you can select **QUIT**, display the referenced list on the home screen, and find and edit the source of the error. To edit an element of a list on the home screen, store the new value to *listName*(*element#*) (page 155).

All elements of a list referenced by an attached formula must be valid for the attached formula.

Detaching a Formula from a List Name

You can detach a formula in any of five ways.

- Use dimL to change the dimension of the list (page 159).
- Use *value istName*(*element#*) to store *value* to an attached-formula list element.
- ◆ Use ""→*listName*, where *listName* is the attached-formula list.
- In the list editor, move the cursor onto the name of the attached-formula list, and then press ENTER CLEAR ENTER. All list elements remain, but the formula is detached and the lock symbol disappears.
- In the list editor, move the cursor onto an element of the attached-formula list. Press [ENTER], edit the element, and then press [ENTER]. The element changes, the formula is detached, and the lock symbol disappears. All other list elements remain.


Editing an Element of a Attached-Formula List

As described above, one way to detach a formula from a list name is to edit an element of the attached-formula list. The TI-86 protects against inadvertently detaching the formula from the list name when you move the cursor onto one of the elements.

Because of the protection feature, you must press **ENTER** before you can edit an element of an attached-formula list. The protection feature prevents you from deleting an element of an attached-formula list. To delete an element of a attached-formula list, you must first detach the formula in any of the ways described above.

Vectors on the TI-86	168
Creating, Storing, and Displaying Vectors	169
Using Mathematical Functions with Vectors	176

Vectors on the TI-86

A vector is a one-dimensional array, arranged in either one row or one column. The vector elements can be real or complex. You can create, display, and edit vectors on the home screen or in the vector editor. When you create a vector, the elements are stored to the vector name.

The TI-86 vector editor displays a vector vertically. On the home screen, a vector is entered and displayed horizontally. When you use a vector in an expression, the TI-86 automatically interprets the vector in the form (row vector or column vector) that is appropriate for the expression. For example, a column vector is appropriate for the expression *matrix***vector*.

On the TI-86, you can store up to 255 elements to a vector in rectangular form. You can use two- or three-element vectors to define magnitude and direction in a two- or three-dimensional space. You can express two- or three-element vectors in different forms, depending on the type of vector.

To express a	You enter:	And the TI-86 returns:
Two-element rectangular vector	[<i>x</i> , <i>y</i>]	[x y]
Two-element cylindrical vector	$[r \angle \theta]$	$[r \angle \theta]$
Two-element spherical vector	$[r \angle \theta]$	$[r \angle \theta]$
Three-element rectangular vector	[<i>x</i> , <i>y</i> , <i>z</i>]	[x y z]
Three-element cylindrical vector	$[r \angle \theta, z]$	$[r \angle \theta \ z]$
Three-element spherical vector	$[r \angle \theta \angle \phi]$	$[r \angle \theta \angle \phi]$

Creating, Storing, and Displaying Vectors

The VECTR (Vector) Menu				2nd [VECTR]			
NAMES	EDIT	MATH	OF	PS	CPLX		
vector names mer		 vector nath menu		V	complex ector menu		
names mei	vector editor		vec veceratior	tor			

The VECTR NAMES Menu 2nd [VECTR] F1

The VECTR NAMES menu contains all currently stored vector names in alphanumeric order. To paste a vector name to the current cursor location, select it from the menu.

[2nd] [VECTR] [F2]

[V][E][C][T]

ALPHA 1

[ENTER]

5[ENTER]

Creating a Vector in the Vector Editor 2nd [VECTR] F2

- **1** Display the vector **Name=** prompt screen.
- ALPHA-lock is on. The VECTR NAMES menu is displayed. Enter a name from one to eight characters long, starting with a letter.
- Obsplay the vector editor. The vector editor menu also is displayed.
- Accept or change the vector *elements* dimension with an integer ≥ 1 and ≤ 255. The vector is displayed; all elements are 0.

The TI-86 distinguishes between uppercase and lowercase letters in vector names. For example, VECT1, Vect1, and vect1 are three different vector names.

↓ or ↑ in the first column indicates additional vector elements. You can enter an expression at a vector element prompt.

Enter each vector element value at each vector element prompt. You can enter expressions. To move to the next prompt, press ENTER or . The vector elements are stored to VECT1, which becomes a VECTR NAMES menu item.

(-) 5 🕶 49
▼ 2 . 45 ▼
. 89 🖵 1 . 8

UECTOR:UECT1 e1=-5 e2=49 e3=2.45 e4=.89 es=1.8	5
INSI DELI DREAL	

The Vector Editor Menu 2nd [VECTR] F2 vectorName ENTER

INSi DELi ▶REAL

- **INSi** Inserts a blank element (*en*=) prompt at the cursor location; shifts current elements down
- DELi Deletes the element from the cursor location and from the vector; shifts elements up
- **>REAL** Converts the displayed complex number vector to a real number vector

Creating a Vector on the Home Screen

NAMES menu item.

[5,3,9] Define the beginning of the vector with [. [2nd] [[] 5, 3, 9 Enter each vector element, separating 0 each from the next with a comma. [2nd] []] Define the end of the vector with]. ß [5,3,9]→vect1 Store the vector to a vector name from one STO→ [2nd] [alpha] [V] A [5 3 9] [E][C][T][ALPHA] to eight characters long, starting with a letter. The vector is displayed horizontally ALPHA 1 ENTER and the vector name becomes a VECTR

To delete a vector name from memory, use the MEM DELETE:VECTR screen (Chapter 17).

Creating a Complex Vector

If any element of a vector is complex, all elements of the vector are displayed as complex. For example, when you enter the vector [1,2,(3,1)], the TI-86 displays [(1,0) (2,0) (3,1)].

To create a complex vector from two real vectors, the syntax is: realVector+(0,1)imaginaryVector>complexVectorName

realVector contains the real part of each element and *imaginaryVector* contains the imaginary part.

Displaying a Vector

To display a vector, paste the vector name to the home screen, and then press ENTER. To display a specific element of *vectorName* on the home screen or in a program, the syntax is: *vectorName*(*element*#)

Real two- and three-element vector results are displayed according to the current vector mode setting: **RectV**, **CyIV**, or **SphereV** (Chapter 1). You can select a vector conversion instruction from the VECTR OPS menu to override the mode setting (page 173).

Complex vectors are displayed in rectangular form only.

When you execute the expression, the answer is displayed as a vector.

Using a Vector in an Expression

- You can enter the vector directly (for example, **35**-[**5**,**10**,**15**]).
- You can use ALPHA and 2nd [alpha] to enter a vector name's individual characters.
- ◆ You can select the vector name from the VECTR NAMES menu ([2nd [VECTR] F1]).
- You can select the vector name from the VARS VECTR screen ([2nd] [CATLG-VARS] [MORE] [F1]).

Editing Vector Dimension and Elements

VECTOR Display the vector **Name=** prompt screen. [2nd] [VECTR] [F2] ก Name=VECT1 Enter the vector name. Either select it from the F1 Ø VECTR NAMES menu or enter the characters. Display the vector editor. ENTER 0 VECT1 nect1 VECTOR:VECT1 Change or accept the vector dimension. 6 ENTER 6 4 e1=-5 ē2=49 e3=2.45 **- - 22** ß

- - 13

[EXIT]

DELi ▶REAL

- Move the cursor to any element and edit it. Continue moving the cursor to other elements.
- Save the changes and exit the vector editor.

To use <u>STO</u> to change an element value on the home screen, the syntax is: *value* +*vectorName*(*element*#)

You can use CLEAR, DEL, and
[INS] to edit matrix
elements. You also can
overwrite existing characters.
-

NAMES EDIT MATH OPS CPLX cross unitV norm dot

cross(vectorA,vectorB)Returns the cross product of vectorA and vectorB, both of which are real or
complex two-element or three-element vectors; expressed with variables,
cross([a,b,c],[d,e,f]) returns [bf-ce cd-af ae-bd]unitV vectorReturns a unit vector where each element of a real or complex vector is
divided by the vector normnorm vectorReturns the Frobenius norm ($\sqrt{\Sigma(real^2+imaginary^2)})$) where the sum is over
all elements of a real or complex vectordot(vectorA,vectorB)Returns the dot product of vectorA and vectorB, both of which are real or
complex vectors; expressed with variables, dot([a,b,c],[d,e,f]) returns ad+be+cf

The VECTR OPS (Operations) Menu 2nd [VECTR] F4

NAMES	EDIT	EDIT	MATH	OPS	CPLX					
dim	Fill	Fill	Pol	▶СуI	▶Sph	•	▶Rec	li⊧vc	vc≽li	

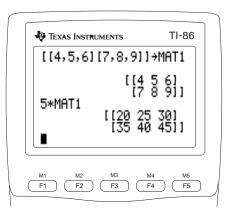
dim vector	Returns the dimension of (or number of elements in) vector
0	Creates a new <i>vectorName</i> of the specified length (<i>#ofElements</i>); each element is 0
#ofElements >dim vectorName	Redimensions <i>vectorName</i> to the specified length (#ofElements)
Fill(number,vectorName)	Stores a real or complex <i>number</i> to every element in <i>vectorName</i>

Press STO to enter the \Rightarrow symbol after #ofElements.

	For the conversi cylindrical form		low, the three-element vector conversion equations for
2	$x = r \cos \theta$	$y = r \sin \theta$	$\mathbf{Z} = \mathbf{Z}$
	The three-eleme x = r cosθ sinφ		rsion equations for spherical form $[r \theta \phi]$ are: z = r cos ϕ
1	vector ▶Pol	Displays	a 2-element <i>vector</i> in polar form $[r \angle \theta]$
1	vector ≯Cyl	Displays	a 2- or 3-element <i>vector</i> as a cylindrical vector $[r \angle \theta \ 0]$ or $[r \angle \theta \ z]$
1	vector ∍Sph	Displays	a 2- or 3-element <i>vector</i> as a spherical vector $[r \angle \theta \ 0]$ or $[r \angle \theta \ \phi]$
(complexVector > Re	c Displays	a 2- or 3-element <i>complexVector</i> in rectangular form $[x y]$ or $[x y z]$
nts are valid	li▶vc <i>list</i>	Converts	a real or complex <i>list</i> into a vector
vc⊧li.	vc}li vector	Converts	a real or complex <i>vector</i> into a list

Complex elements are valid only for livc and vc+li.

The VECTR CPLX (Complex) Menu					2nd [VE	CTR] [F5]
	NAMES	EDIT	MATH	OPS	CPLX	
	conj	real	imag	abs	angle	


conj complexVector	Returns a vector in which each element is the complex conjugate of the corresponding element of a <i>complexVector</i>
real complexVector	Returns a real vector in which each element is the real portion of the corresponding element of a <i>complexVector</i>
imag complexVector	Returns a real vector in which each element is the imaginary portion of the corresponding element of a <i>complexVector</i>
abs Vector	Returns a real vector in which each element is either the absolute value of the corresponding element of a real <i>vector</i> or the magnitude (modulus) of the corresponding element of a <i>complexVector</i>
angle complexVector	Returns a real vector in which each element is either 0 if the element of <i>complexVector</i> is real or the polar angle if the element of <i>complexVector</i> is complex; polar angles are calculated as $\tan^{-1}(complex/real)$ adjusted by $+\pi$ in the second quadrant and by $-\pi$ in the third quadrant

Using Mathematical Functions with Vectors

	To add or subtract two vectors, the dimension of vectorA must equal the dimension of vectorB.	vector A+ $vector B$	Adds each <i>vectorA</i> element to the corresponding <i>vectorB</i> element; returns a vector of the sums
		vectorA-vectorB	Subtracts each <i>vectorB</i> element from the corresponding <i>vectorA</i> element; returns a vector of the differences
	You cannot multiply two vectors or divide one vector	vector * number or number * vector	Returns a vector that is the product of a real or complex <i>number</i> times each element in a real or complex <i>vector</i>
	by another vector.	matrix*vector	Returns a vector that is the product of each <i>vector</i> element times each <i>matrix</i> element; <i>matrix</i> column dimension and <i>vector</i> dimension must be equal
		vector/number	Returns a vector that is the quotient of each real or complex <i>vector</i> element divided by a real or complex <i>number</i>
		-vector	(negation) Changes the sign of each vector element
	== and ≠ are on the TEST menu.	vectorA==vectorB	Returns ${\bf 1}$ if every corresponding element comparison is true; returns ${\bf 0}$ if any is false
	round, iPart, fPart, and int	$vectorA \neq vectorB$	Returns 1 if at least one corresponding element comparison is false
	are on the MATH NUM menu.	<pre>round(vector[,#ofDecimals])</pre>	Rounds each <i>vector</i> element to 12 digits, or rounds to specified #ofDecimals
		iPart vector	Returns the integer part of each real or complex vector element
		fPart vector	Returns the fractional part of each real or complex vector element
		int vector	Returns the greatest integer of each real or complex <i>vector</i> element

Matrices on the TI-86	178
Creating, Storing, and Displaying Matrices	178
Using Mathematical Functions with Matrices	185

Matrices on the TI-86

A matrix is a two-dimensional array, arranged in rows and columns. The matrix elements can be real or complex. You can create, display, and edit matrices on the home screen or in the matrix editor. When you create a matrix, the elements are stored to the matrix name.

Creating, Storing, and Displaying Matrices

The MATRX	[2nd) [I	MATRX]		
NAMES E	DIT	MATH	0	PS	CPLX
	atrix itor	matrix math menu matrix op		complex matrix menu perations enu	

The MATRX NAMES Menu 2nd [MATRX] [F1]

The MATRX NAMES menu contains all currently stored matrix names in alphanumeric order. To paste a matrix name to the current cursor location, select it from the menu.

[2nd] [MATRX] [F2]

[2nd] [MATRX] [F2]

[M][A][T]

ALPHA 1

Creating a Matrix in the Matrix Editor

- 1 Display the matrix **Name=** prompt screen.
- 2 ALPHA-lock is on. The MATRX NAMES menu is displayed. Enter a name from one to eight characters long, starting with a letter.

MATRX Name=MAT1

The TI-86 distinguishes between uppercase and lowercase letters in matrix names. For example, **MAT1** and **mat1** are two different vector names. An ellipsis (...) at either end of matrix rows indicates additional columns.

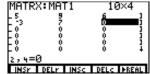
↓ or ↑ in the last column indicates additional rows.

- 3 Display the matrix editor and the matrix editor menu.
- Accept or change the matrix dimensions (row × column) in the top-right corner of the screen, (1≤row≤255 and 1≤column≤255); maximum combination is subject to memory availability. The matrix is displayed; all elements are 0.
- Enter each matrix element value at the element prompt (1,1= for row 1, column 1). You can enter expressions. To move to the next element, press ENTER. To move to the next row, press .

ENTER	

(-)

EN⁻


EN⁻

(-) [EN]

10 ENTER 4 ENTER

MATRX	:MAT1	10>	<4
C (0	0	0	
E 0.	8	8	
ŧŏ	ŏ	ŏ	
C Ó	Ó.	Ó.	
C 0 _	0	0	+.
1,1=0			
INSr	DELY INSC	DELC	REAL

4 ENTER 5	P1F
ter) 9 [Enter] 6	Eø
ter) 1 [Enter]	ΞÔ
3 ENTER 7	2,
TER] and so on	

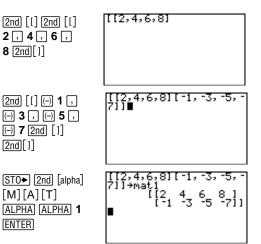
The Matrix Editor Menu [2nd [MATRX] [F2] matrixName [ENTER]

INSr DEL	r INSc	DELc	▶REAL
----------	--------	------	-------

- **INSr** Inserts a row at the cursor location; shifts subsequent rows down
- **DELr** Deletes row at the cursor location; shifts subsequent rows up
- **INSc** Inserts a column at the cursor location; shifts subsequent columns to the right
- **DELC** Deletes the column at the cursor location; shifts subsequent columns to the left
- **FREAL** Converts the displayed complex number matrix to a real number matrix

The close bracket is not necessary when it precedes STO.

To delete a matrix name from memory, use the MEM DELETE:MATRX screen (Chapter 17).


Creating a Matrix on the Home Screen

- Define the start of the matrix with [, and then define the start of the first row with another
 [. Enter each element for the row, separating them with commas. Define the end of the first row with].
- 2 Define the start of each subsequent row with [. Enter the row elements, separating each from the next with a comma. Define the end of each row with]. Then define the end of the matrix with].
- Store the matrix to a matrix name. Either enter a name from one to eight characters long, starting with a letter, or select a name from the MATRX NAMES menu. The matrix is displayed. If newly created, the matrix name becomes a MATRX NAMES menu item.

Creating a Complex Matrix

If any matrix element is complex, all elements of the matrix are displayed as complex. For example, when you enter the matrix [[1,2][5,(3,1)]], the TI-86 displays [[(1,0) (2,0)][(5,0) (3,1)]]. To create a complex matrix from two real matrices with the same dimensions, the syntax is: $realMatrix+(0,1)imaginaryMatrix \Rightarrow complexMatrixName$

realMatrix contains the real part of each element and *imaginaryMatrix* contains the imaginary part of each element.

To view elements beyond the current screen, use \triangleright , \bigtriangledown , \checkmark , \triangleleft , and \triangleleft .

When you execute the expression, the answer is displayed as a matrix.

Displaying Matrix Elements, Rows, and Submatrices

To display an existing matrix on the home screen, enter the matrix name's individual characters or select it from the MATRX NAMES menu, and then press ENTER. The full value of each element is displayed. Elements with very large values may be expressed exponentially.

To display specific elements of *matrixName*, the syntax is: *matrixName*(*row,column*)

To display a row of *matrixName*, the syntax is: *matrixName*(row)

To display a submatrix of *matrixName*, the syntax is: *matrixName*(beginRow,beginColumn,endRow,endColumn)

	[1 [0 [0 [0 [0	000000	3 7 0 0 0 0	0] 0] 0] 0] 0]↓
MAT1(2,2)				-3
MAT1(2)	I	[1	-37	7 01

[[-4.5

MAT1(1,2,2,3)		
	[[5_	<u></u>
	[-3	711

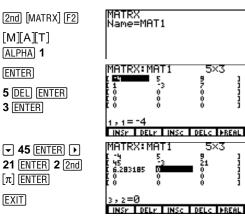
Using a Matrix in an Expression

- You can enter the matrix directly (for example, **5***[[2,3][3,5]]).
- ◆ You can use ALPHA and 2nd [alpha] to enter a matrix name's individual characters (for example, MAT1*3).
- You can select the matrix name from the MATRX NAMES menu (2nd [MATRX] [F1]).
- You can select the matrix name from the VARS MATRX screen ([2nd] [CATLG-VARS] MORE [F2]).

Editing Matrices in the Matrix Editor

- **1** Display the matrix **Name=** prompt screen.
- 2 Enter the matrix name. Either select it from the MATRX NAMES menu or enter the characters.
- **3** Display the matrix editor.
- Edit or accept the row dimension, and then edit or accept the column dimension.
- Move the cursor to any element and edit it. Continue moving the cursor to other elements.
- 6 Save the changes and leave the matrix editor.

Editing Matrices on the Home Screen


To change a matrix element value, the syntax is: *value*>*matrixName*(*row,column*)

To change the values of an entire row of elements, the syntax is:

[valueA,valueB,...,value n]→matrixName(row)

To change the values of part of a row, beginning at a specified column, the syntax is: [valueA,valueB,...,value n]>matrixName(row,beginColumn)

To change the values of a submatrix within *matrixName*, the syntax is: [[valueA,...,value n] ... [valueA,...,value n]]→matrixName(beginRow,beginColumn)

You can use CLEAR, DEL, and 2nd [INS] to edit matrix elements. You also can overwrite existing characters.

NAMES	EDIT	MATH	OPS	CPLX						
det	Т	norm	eigVI	eigVc	►	rnorm	cnorm	LU	cond	
d e t square	eMatrix	Returr	ns the det	erminant o	of squ	uareMatri	<i>x</i>			
$matrix^{T}$		Returr	is a transj	posed mat	rix; e	each elem	ent's (<i>row</i> ,	,column)	coordinat	es switch
norm <i>mat</i>	rix			benius no a real or co			imaginar c	$\overline{(y^2)}$) whe	re the sum	ı is over
eigVI squa	ıreMatrix		Returns a list of the normalized eigenvalues of a real or complex squareMatrix							
eigVc squ	areMatrix		Returns a matrix containing the eigenvectors for a real or complex <i>squareMatrix</i> ; each column corresponds to an eigenvalue							
rnorm ma	trix		(row norm) Returns the largest of the sums of the absolute values of the elements (magnitudes of complex elements) in each row of <i>matrix</i>							
cnorm Ma	trix		(column norm) Returns the largest of the sums of the absolute values of the elements (magnitudes of complex elements) in each column of <i>matrix</i>							
L U(matrix IMatrixI uMatrix pMatrix	Name, Name,	Calculates the Crout LU (lower-upper) decomposition of a real or complex <i>matrix</i> ; stores the lower triangular matrix to <i>lMatrixName</i> , the upper triangular matrix to <i>uMatrixName</i> , and the permutation matrix (which describes the row swaps done during calculation) in <i>pMatrixName</i>								
cond squa	ureMatrix	produ	describes the row swaps done during calculation) in <i>pMatrixName</i> Calculates cnorm <i>squareMatrix</i> * cnorm <i>squareMatrix</i> ⁻¹ ; the closer the product is to 1, the more stable <i>squareMatrix</i> can be expected to be in matrix functions							

NAMES	EDIT	MATH	OPS	CPLX						
dim	Fill	ident	ref	rref	►	aug	rSwap	rAdd	multR	mRAd
			-	-						1
					•	randM				1

Press [ST0→] to enter the →	dim <i>matrix</i>	Returns the dimensions of <i>matrix</i> as a list {rows columns}
symbol after the close brace.	{rows,columns}→dim matrixName	Creates a new <i>matrixName</i> of the specified dimensions; each element is 0
	{rows,columns}>dim matrixName	Redimensions matrixName to the specified dimensions
	Fill(number,matrixName)	Stores a real or complex <i>number</i> to each <i>matrixName</i> element
	ident dimension	Returns the square identity matrix of $dimension \times dimension$
	ref matrix	Returns the row-echelon form of matrix
	rref matrix	Returns the reduced row-echelon form of matrix
When you use aug(, the number of rows in matrixA must equal the number of rows in matrixB or the number of elements in vector.	aug(matrixA,matrixB)	Concatenates matrixA and matrixB
	aug(matrix,vector)	Concatenates matrix and vector
	rSwap(<i>matrix</i> , <i>rowA</i> , <i>rowB</i>)	Returns a matrix after swapping $rowA$ and $rowB$ of $matrix$
	rAdd(<i>matrix</i> , <i>rowA</i> , <i>rowB</i>)	Returns matrix with (rowA+rowB) of matrix stored in rowB
	multR(number,matrix,row)	Returns <i>matrix</i> with (<i>row</i> * <i>number</i>) stored in <i>row</i>
Elements of matrices created	mRAdd(number,matrix,rowA,rowB)	Returns <i>matrix</i> with ((<i>rowA</i> * <i>number</i>)+ <i>rowB</i>) stored in <i>rowB</i>
with randM(are integers ≥-9 and ≤9.	randM(rows,columns)	Creates a matrix of specified dimensions with random elements

The MATRY ODC (Oneverticate) Menu

The MAT	RX CPLX	(Comple	x) Menu	2nd) [N	/IATRX] [F5]

NAMES	EDIT	MATH	OPS	CPLX
conj	real	imag	abs	angle

conj complexMatrix	Returns a matrix in which each element is the complex conjugate of the corresponding element of a <i>complexMatrix</i>
real complexMatrix	Returns a real matrix in which each element is the real portion of the corresponding element of a <i>complexMatrix</i>
imag complexMatrix	Returns a real matrix in which each element is the imaginary portion of the corresponding element of a <i>complexMatrix</i>
abs <i>matrix</i>	Returns a real matrix in which each element is either the absolute value of the corresponding element of a real <i>matrix</i> or the magnitude (modulus) of the corresponding element of a complex <i>matrix</i>
angle <i>complexMatrix</i>	Returns a real matrix in which each element is either 0 if the element of $complexMatrix$ is real or the polar angle if the element of $complexMatrix$ is complex; the polar angles are calculated as $tan^{-1}(imaginary real)$ adjusted by $+\pi$ in the second quadrant and by $-\pi$ in the third quadrant

Using Mathematical Functions with Matrices

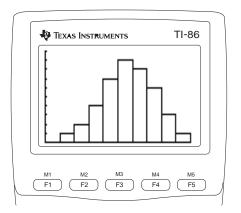
To add or subtract two matrices, the dimensions of	matrixA+matrixB	Adds each <i>matrixA</i> element to the corresponding <i>matrixB</i> element; returns a matrix of the sums
matrixA must equal the dimensions of matrixB.	matrixA-matrixB	Subtracts each <i>matrixB</i> element from the corresponding <i>matrixA</i> element; returns a matrix of the differences

To multiply two matrices, the column dimension of matrixA must equal the row dimension of matrixB.

To enter $^{-1}$, press 2nd [x-1]. Do not use x-VAR $\land (-) 1$.

e[^], sin, and cos do not return the exponential, sine, or cosine of each matrix element.

To make relational comparisons, matrixA and matrixB must have equal dimensions.


== and ≠ are on the TEST menu.

round, iPart, fPart, and int are on the MATH NUM menu.

<i>matrixA</i> * <i>matrixB</i> or <i>matrixB</i> * <i>matrixA</i>	Multiplies <i>matrixA</i> and <i>matrixB</i> ; returns a square matrix of the products
matrix * number or number * matrix	Returns a matrix that is the product of a real or complex <i>number</i> times each element in a real or complex <i>matrix</i>
matrix*vector	Returns a vector that is the product of each <i>vector</i> element times each <i>matrix</i> element; the <i>matrix</i> column dimension and <i>vector</i> dimension must be equal
-matrix	(negation) Changes the sign of each element in <i>matrix</i>
squareMatrix ⁻¹	Returns the inverse of <i>squareMatrix</i> (not the inverse of each element)
matrix ²	Squares a square matrix
$square Matrix {\bf ^p} ower$	Raises a squareMatrix to the designated power
e^ squareMatrix	Returns the square matrix exponential of a real squareMatrix
sin squareMatrix	Returns the square matrix sine of a real squareMatrix
cos squareMatrix	Returns the square matrix cosine of a real squareMatrix
matrixA==matrixB	Returns 1 if every corresponding element comparison is true; returns 0 if any is false
$matrixA \neq matrixB$	Returns 1 if at least one corresponding element comparison is false
<pre>round(matrix[,#ofDecimals])</pre>	Rounds each matrix element to 12 digits or to specified #of Decimals
iPart matrix	Returns the integer part of each element of a real or complex matrix
fPart matrix	Returns the fractional part of each element of a real or complex $matrix$
int matrix	Returns the greatest integer of each element of a real or complex $matrix$

Statistics

Statistical Analysis on the TI-86	
Setting Up a Statistical Analysis	
Results of a Statistical Analysis	
Plotting Statistical Data	
The STAT DRAW Menu	
Forecasting a Statistical Data Value	

Statistical Analysis on the TI-86

With the TI-86, you can analyze one-variable and two-variable statistical data, which are stored in lists. One-variable data has one measured variable. Two-variable data has pairs comprising an independent variable and a dependent variable.

When analyzing either kind of data, you can specify a frequency of occurrence for the independent variable values. These specified frequencies must be real numbers ≥ 0 .

Setting Up a Statistical Analysis

- 1 Enter the statistical data into one or more lists (Chapter 11).
- 2 Calculate the statistical variables or fit a model to the data.
- 3 Plot the data.
- 4 Graph the regression equation for the plotted data.

The STAT (Statistics) Menu [2nd [STAT]

CALC DRAW FCST EDIT PLOT VARS statistical result statistical stat plot calculations variables menu menu statistical drawing menu list editor forecast tools menu editor

The same list editor is displayed, whether you press [2nd [STAT] F2] or [2nd [LIST] F4]. For a description of the list editor, see Chapter 11.

Entering Statistical Data

Data for statistical analysis is stored in lists, which you can create and edit in the list editor (Chapter 11), on the home screen (Chapter 11), or in a program (Chapter 16). The TI-86 has three built-in list names for statistics, **xStat** (x-variable list), **yStat** (y-variable list), and **fStat** (frequency list). TI-86 statistical functions use these lists as defaults.

The LIST NAMES Menu 2nd [STAT] F2 F3

{	}	NAMES	EDIT	OPS
fStat	xStat	yStat		

- **fStat** An automatically updated list of the frequency values used in the last statistical computation requiring a frequency; default is a list where each element is **1**
- xStat An automatically updated list of the data from the x-list used in the last statistical analysis
- **yStat** An automatically updated list of the data from the y-list used in the last statistical analysis

The STAT CALC (Calculations) Menu 2nd [STAT] [F1]

CALC	EDIT	PLOT	DRAW	VARS						
OneVa	TwoVa	LinR	LnR	ExpR	►	PwrR	SinR	LgstR	P2Reg	P3Re

P4Reg StReg

a (one variable) Analyzes data with one measured variable

oVa (two variable) Analyzes paired data

The LIST NAMES menu shown here has no user-created list names.

Editing an element of xStat or yStat clears any values stored to statistical result variables.

The STAT CALC functions store the results to statistical result variables (page 193).

The syntax description for each STAT CALC menu item follows this section.

OneVa TwoVa

For regression analysis, the statistical results are	LinR	(linear regression) Fits the model equation y=a+bx to the data; displays values for a (slope) and b (y-intercept)
calculated using a least- squares fit.	LnR	(logarithmic regression) Fits the model equation $y=a+b \ln x$ to the data using transformed values $\ln(x)$ and y; displays values for a and b
	ExpR	(exponential regression) Fits the model equation $y=ab^x$ to the data using transformed values x and $ln(y)$; displays values for a and b ; elements in the x-list and y-list elements must be integers
	PwrR	(power regression) Fits the model equation $y=ax^b$ to the data using transformed values $ln(x)$ and $ln(y)$; displays values for a and b
SinR and LgstR are calculated using an iterative least-squares fit.	SinR	(sinusoidal regression) Fits the model equation y=a*sin(bx+c)+d to the data; displays values for a , b , c , and d ; SinR requires at least four data points; it also requires at least two data points per cycle to avoid aliased frequency estimates
	LgstR	(logistic regression) Fits the model equation $y=a/(1+be^{cx})+d$ to the data; displays a , b , c , and d
	P2Reg	(quadratic regression) Fits the second-degree polynomial $y=ax^2+bx+c$ to the data; displays values for a , b , and c ; for three data points, the equation is a polynomial fit; for four or more, it is a polynomial regression; P2Reg requires at least three data points
	P3Reg	(cubic regression) Fits the third-degree polynomial $y=ax^3+bx^2+cx+d$ to the data; displays values for a , b , c , and d ; for four points, the equation is a polynomial fit; for five or more, it is a polynomial regression; P3Reg requires at least four data points
	P4Reg	(quartic regression) Fits the fourth-degree polynomial $y=ax^4+bx^3+cx^2+dx+e$ to the data; displays values for a , b , c , d , and e ; for five points, the equation is a polynomial fit; for six or more, it is a polynomial regression; P4Reg requires at least five data points
	StReg	(store regression equation) Pastes StReg(to the home screen; enter a <i>variable</i> and press <u>ENTER</u>]; the current regression equation is stored to <i>variable</i>

When you select OneVa or TwoVa , the abbreviation OneVar or TwoVar is	For OneVa, the syntax is: OneVar [xList,frequencyList]
displayed.	For TwoVa, the syntax is: TwoVar [xLlist,yList,frequencyList]
For PwrR and ExpR , the elements of <i>xList</i> and <i>yList</i> must be integers ≥ 1.	For LinR, LnR, ExpR, PwrR, P2Reg, P3Reg, and P4Reg, the syntax is: TwoVar [xList,yList,frequencyList]
U U	For SinR, the syntax is: SinR [iterations,xList,yList,period,equationVariable]
Default for iterations is 64.	<i>iterations</i> is the number of iterations to go through; higher values for iterations produce a better fit, but take longer to calculate. <i>period</i> is an initial guess at which to begin calculation.
	For LgstR, the syntax is: LgstR [iterations,xList,yList,frequencyList,equationVariable]
	To copy the contents RegEq to any variable after calculating the regression, the syntax is: StReg (<i>variable</i>)
	Automatic Regression Equation Storage

LinR, LnR, ExpR, PwrR, SinR, LgstR, P2Reg, P3Reg, and P4Reg are regression models. Each regression model has an optional argument, *equationVariable*, for which you can specify an equation variable, such as y1. Upon execution, the regression equation is stored automatically to the specified equation variable, and the function is selected.

Regardless of whether you specify *equationVariable*, the regression equation always is stored to the result variable **RegEq**, which is an item on the STAT VARS menu. The regression equation displays the actual result values.

PRegC is the only statistical result variable calculated for a polynomial regression.

One- and two-variable statistical functions share the result variables.

The statistical variables are calculated and stored as shown in the table on the next page.

You can use ALPHA keys, alpha keys, and the CHAR GREEK menu to enter some result variables. The result for a polynomial regression, sinusoidal regression, or logistic regression is stored in **PRegC** (polynomial/regression coefficients). **PRegC** is a list containing the coefficients for an equation. For example, for **P3Reg**, the result **PRegC={3 5 -2 7}** would represent $y=3x^3+5x^2-2x+7$.

Results of a Statistical Analysis

When you perform a statistical analysis, the calculated results are stored in the result variables and the data from the lists used in the analysis are stored to **xStat**, **yStat**, and **fStat**. If you edit a list or change the type of analysis, all statistical variables are cleared.

The STAT VARS (Statistical Variables) Menu 2nd [STAT] F5

CALC	EDIT	PLOT	DRAW	VARS
x	σ Χ	Sx	ÿ	σ y

•	Sy	Σχ	Σ χ²	Σу	Σ y²
►	Σχγ	RegEq	corr	а	b
•	n	minX	maxX	minY	maxY
►	Med	PRegC	Qrtl1	Qrtl3	tolMe

To paste a result variable to the cursor location, either select the variable from the STAT VARS menu or select the variable from the VARS STAT selection screen.

- To use a result variable in an expression, paste it to the appropriate cursor location.
- To display the value of a result variable, paste it to the home screen and press ENTER.
- To store results to another variable after a calculation, paste the result variable to the home screen, press <u>STO</u>, enter a new variable, and then press <u>ENTER</u>.

	Result Variables	1-Var Stats	2-Var Stats	Other	Result Variables	1-Var Stats	2-Var Stats	Other
These words are abbreviated in the table: pop = population std dev = standard deviation coeff = coefficient	mean of x values	x	x		correlation coeff			corr
	pop std dev of x	σ Χ	σ x		y-intercept of reg eq	1		а
	sample std dev of x	Sx	Sx		slope of reg eq			b
int = intercept reg eq = regression equation	mean of y values		У		regression/fit coeff			a , b
pts = points	pop std dev of y		σ y		number of data pts	n	n	
min = minimum max = maximum	sample std dev of y		Sy		min of x values	minX	minX	
	sum of x values	Σχ	Σχ		max of x values	maxX	maxX	
	sum of x^2 values	$\Sigma \mathbf{X^2}$	ΣX^2		min of y values		minY	
	sum of y values		Σ у		max of y values		maxY	
	sum of y^2 values		Σ y²		median	Med		
	sum of x * y		Σχγ		1st quartile			Qrtl1
	regression equation			RegEq	3rd quartile			Qrtl3
	polynomial, LgstR , and SinR coeff's			a (y-int) b (slope)	polynomial LgstR , and SinR reg coeff	s		PRegC

> The first quartile (Qrtl1) is the median of the points between minX and Med (median). The third quartile (Qrtl3) is the median of the points between Med and maxX.

> When you calculate a logistic regression, 1 is stored to tolMet (tolMe) if the TI-86 internal tolerance was met before the calculator arrived at a result; if not met, **0** is stored to tolMet.

Plotting Statistical Data

You can plot one, two, or three sets of statistical list data. The five available plot types are scatter plot, xyLine, histogram, modified box plot, and regular box plot.

- **1** Store the statistical data in one or more lists (Chapter 11).
- 2 Select or deselect functions in the current equation editor as appropriate (Chapter 5).
- 3 Define the statistical plot.
- **4** Turn on the plots you want to display.
- **5** Define the window variables for the graph screen (Chapter 5).
- **6** Display and explore the plotted graph (Chapter 6).

The STAT PLOT Status Screen 2nd [STAT] F3

The STAT PLOT status screen summarizes the settings for **Plot1**, **Plot2**, and **Plot3**. The illustration below identifies the settings for **Plot1**. This screen is not interactive. To change a setting, select **PLOT1**, **PLOT2**, or **PLOT3** from the STAT PLOT status screen menu.

This screen shows the default stat plot settings. If you select another plot type, some prompts may change.

When you display a stat plot editor, the STAT PLOT menu remains so that you can easily switch to another stat plot.

In this guidebook, brackets ([and]) with syntax specify arguments as optional. Do not enter brackets, except with vectors and matrices.

You need not turn on a stat plot to change the settings.

You also can use STAT PLOT menu items **PIOn** or **PIOff** to turn on or turn off stat plots.

The STA				
PLOT1	PLOT2	PLOT3	PIOn	PIOff

- PLOT1 Displays the stat plot editor for Plot1
- PLOT2 Displays the stat plot editor for Plot2
- PLOT3 Displays the stat plot editor for Plot3
- PIOn [1,2,3] Turns on all plots (if you enter no arguments) or turns on specified plots only

PIOff [1,2,3] Turns off all plots (if you enter no arguments) or turns off specified plots only

To turn on or turn off all three stat plots, select **PIOn** or **PIOff** from the STAT PLOT menu. **PIOn** or **PIOff** is pasted to the home screen. Press ENTER. All stat plots are now on or off.

Setting Up a Stat Plot

To set up a stat plot, select **PLOT1**, **PLOT2**, or **PLOT3** from the STAT PLOT menu. The stat plot editor for the selected stat plot is displayed. Each stat plot type has a unique stat plot editor. The screen to the right shows the stat plot editor for the default in (scatter plot). If you select another plot type, some prompts may change.

Turning On and Turning Off a Stat Plot

When you display a stat plot editor, the cursor is on the **On** option.

- To turn on the stat plot, press ENTER.
- To turn off the stat plot, press \blacktriangleright ENTER.

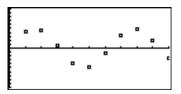
To display the PLOT TYPE menu, move the cursor onto the plot type icon at the **Type=** prompt.

When you select a plot type, the appearance of the stat plot editor may change. The PLOT TYPE Menu (Selecting a Plot Type)

PLOT1	PLOT2	PLOT3	PIOn	PIOff
SCAT	xyLINE	MBOX	HIST	BOX

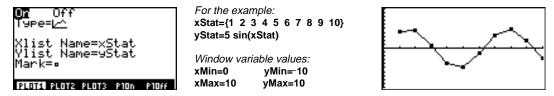
At this prompt	Enter this information:	Default is:	Displayed menu is:
Xlist Name=	independent-data list name	xStat	LIST NAMES menu
Ylist Name=	dependent-data list name	yStat	LIST NAMES menu
Freq=	frequency list name (or 1)	fStat (default value: 1)	LIST NAMES menu
Mark=	plot mark (\Box or + or •)	\Box (none for HIST or BOX)	PLOT MARK menu

- Any list you enter at the Xlist Name= prompt is stored to the list name xStat.
- Any list you enter at the Ylist Name= prompt is stored to the list name yStat.
- Any list you enter at the Freq= prompt is stored to fStat.

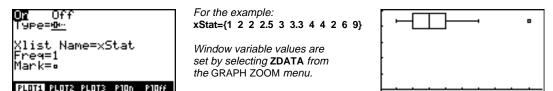

Plot Type Characteristics

SCAT (scatter plot) plots the data points from XIist Name and YIist Name as coordinate pairs, representing each point with a box (\Box), cross (+), or dot (•) mark type. XIist Name and YIist Name must be the same length. XIist Name and YIist Name can be the same list.

UN Off Type= <u>L~</u>	
Xlist Name=xStat Ylist Name=yStat Mark=∘	
24054 PLOT2 PLOT3 P10n	P10ff


For the example: xStat={1 2 3 4 5 6 7 8 9 10} yStat=5 sin(xStat)

Window variable values:xMin=0yMin=-10xMax=10yMax=10



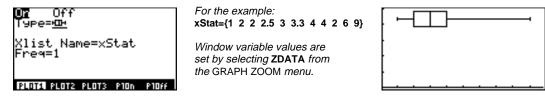
Stat plots are displayed on the graph screen ([GRAPH] F5), as defined by the window variable values (Chapter 5). Some graph tools apply to stat plots.

In these stat plot examples, all functions are deselected. Also, menus are cleared from the screen with [CLEAR]. **xyLINE** is a scatter plot in which the data points are plotted and connected in order of appearance in **Xlist Name** and **Ylist Name**. You may want to use **SortA** or **SortD** from the LIST OPS menu (Chapter 11) to sort the lists before you plot them.

<u>Here</u> MBOX (modified box plot) plots one-variable data, like the regular box plot, except that the points are 1.5 * Interquartile Range beyond the quartiles. (The Interquartile Range is defined as the difference between the third quartile **Q**₃ and the first quartile **Q**₁.) These points are plotted individually beyond the whisker, using the **Mark** (\Box or + or •) you select.

Whiskers are the lines protruding from the sides of the box.

You can trace these points, which are called outliers. When outliers exist, the end of each whisker will display an x= prompt. When no outliers exist, xMin and xMax are the prompts for the end of each whisker. Q_1 , Med (median), and Q_3 define the box.


Modified box plots are plotted with respect to xMin and xMax, but ignore yMin and yMax. When two modified box plots are plotted, the first one plots at the top of the screen and the second plots in the middle. When three are plotted, the first one plots at the top, the second in the middle, and the third at the bottom.

In HIST (histogram) plots one-variable data. The xScI window variable value determines the width of each bar, beginning at xMin. ZDATA (GRAPH ZOOM menu) adjusts xMin, xMax, yMin, and yMax to include all values, and also adjusts xScI. (xMax – xMin) / xScI \leq 47 must be true. A value that occurs on the edge of a bar is counted in the bar to the right.

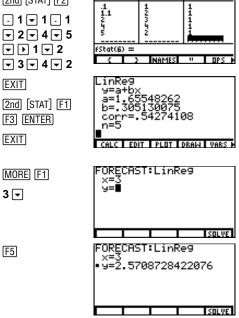
OR Off Type= <u>An</u> Xlist Name=xStat	For the example: xStat={1 2 2 2 3 8 9 5 6 6 7 7 4 4 9 9 9}	
Freq=1	Window variable values: xMin=0 yMin=0 xMax=10 yMax=5	

Whiskers are the lines protruding from the sides of the box.

 \square BOX (regular box plot) plots one-variable data. The whiskers on the plot extend from the minimum data point in the set (xMin) to the first quartile (Q₁) and from the third quartile (Q₃) to the maximum point (xMax). The box is defined by Q₁, Med (median), and Q₃.

Box plots are plotted with respect to xMin and xMax, but ignore yMin and yMax. When two box plots are plotted, the first one plots at the top of the screen and the second plots in the middle. When three are plotted, the first one plots at the top, the second in the middle, and the third at the bottom.

The STAT DRAW Menu			2nd	[S1	ГАТ] (F4]			
CALC EDIT	PLOT	DRAW	VARS		r				
HIST SCAT	xyLINE	BOX	MBOX	►	DRREG	CLDRW	DrawF	STPIC	RCPIC
HIST	Draws a histogram of one-variable data								
SCAT	Draws a scatter plot of the data points								
xyLINE	Draws the data points and a line connecting each point to the next point								
BOX	Draws a box plot of the data points								
МВОХ	Draws a modified box plot of the data points								
DRREG	(draw regression equation) Draws the current regression equation								
CLDRW	(clear drawings) Displays the current graph with no drawings								
${\bf DrawF}\ expression$	(draw function) Plots expression as a drawing								
STPIC	(store picture) Displays the picture variable Name= prompt; enter a valid variable name, starting with a letter, and then press ENTER to store the current picture								
RCPIC	(recall picture) Displays the picture variable Name= prompt and menu; select or enter a valid variable name, and then press ENTER ; the stored picture is redrawn								


Forecasting a Statistical Data Value

When you select any of the first five STAT DRAW menu items, the TI-86 plots the data stored in the lists **xStat**

and yStat.

Using the forecast editor, you can forecast an x-value or y-value based on the current regression equation. To use the forecast editor, a regression equation must be stored to **RegEq**.

- Enter stat data in the list editor. The screen to a the right shows all **fStat** elements as **1**, but you need not enter them. **1** is the default for all fStat elements. However, if other elements are stored to fStat, you must clear them.
- Display the home screen. ค
- 6 Execute a linear regression for xStat and yStat. The statistical results are displayed.
- A Remove the STAT CALC menu to display all results, including **n**.
- 6 Display the forecast editor. The current regression model is displayed on the top line.
- 6 Enter **x=3**, and then move the cursor to the **y=** prompt.
- Select **SOLVE** from the forecast editor menu to F5 ด solve for **y** at **x=3**. A small square indicates the solution. You can continue to use the forecast editor with other values for **x** or **y**.

xStat

[2nd] [STAT] [F2]

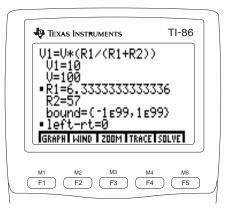
EXIT

EXIT

3 🖵

yStat

fStat


If the most recent calculation was a polynomial regression. you can only forecast the y value.

When you use FCST, the values of x, y, and Ans are not updated. To store the x value or \mathbf{y} value, move the cursor onto the variable to be stored, press \mathbf{STO} , enter a valid variable name at the **Sto** prompt, and then press [ENTER].

Values entered at forecast editor prompts must be real numbers or expressions that evaluate to real numbers.

Equation Solving

Preview: The Equation Solver	202
Entering an Equation in the Equation-Entry Editor	203
Setting Up the Interactive-Solver Editor	204
Solving for the Unknown Variable	206
Graphing the Solution	207
Solver Graph Tools	207
The Simultaneous Equation Solver	208
The Polynomial Root-Finder	211

Preview: The Equation Solver [2nd] [SOLVER]

With the equation solver, you can enter an expression or equation, store values to all but one variable in the expression or equation, and then solve for the unknown variable. These steps introduce the solver. For details, read this chapter.

- Display the equation-entry editor. The a VARS EQU menu is displayed on the bottom of the screen.
 - Enter an equation. When you press A [ENTER], the interactive-solver editor and solver menu are displayed.
 - Enter values for each variable, except the 8 unknown variable **R1**. Some variables may have values stored to them already.
 - Move the cursor to the variable for which 4 you want to solve. You may enter a guess.
 - Solve the equation for the variable. Small ß squares mark both the solution variable and the equation left-rt=0 (the left side of the equation minus the right side of the equation). If you edit a value or leave the screen, the squares disappear.

2nd [SOLVER] [ALPHA] [V] 1 (ALPHA) [=] (ALPHA) [V] ((ALPHA] [R] 1 ÷ ((ALPHA] [R] 1 + (ALPHA] [R] 2)) ENTER	ean:V1=V(R1/(R1+R2)) V1=V(R1/(R1+R2)) V1= R1= R2= bound=(-1e99,1e99) GRAPHINING I ZOOM TRACE SOLVE
10 v 100 v v 57 A	U1=U(R1/(R1+R2)) U1=10 V=100 R1=∎ R2=57 bound=(~1e99,1e99) GRAPHINING IZODM ITRACE SOLVE
F5	U1=U(R1/(R1+R2)) V1=10 V=100 R1=6.33333333333333 R2=57 bound=(-1£99,1£99) left-rt=0

GRAPH WIND ZOOM TRACE SOLVE

The VARS EQU menu is a menu version of the VARS EQU screen (Chapter 2).

The example uses a formula for a voltage divider.

R1 and R2 represent resistors.

V and V1 represent voltage.

To solve for the unknown variable in an equation on the home screen or in the program editor, select Solver(from the CATALOG (A to Z Reference).

Entering an Equation in the Equation-Entry Editor

The equation solver uses two editors: the equation-entry editor, where you enter and edit the equation you want to solve, and the interactive-solver editor, where you enter known variable values, select the variable for which you want to solve, and display the solution.

To display the equation-entry editor, press [2nd] [SOLVER]. In this editor, you can:

- Enter an equation directly.
- Enter a defined equation variable's individual characters or select it from the VARS EQU menu.
- Recall the contents of a defined equation variable.

ean:V1=V(R1/(R1+R2))

As you enter or edit the equation, the TI-86 automatically stores it to the variable eqn.

The VARS EQU menu is a menu version of the VARS EQU screen (Chapter 2). The items are all variables to which an equation is stored. This includes all selected and deselected equation variables defined in the equation editors of all four graphing modes (Chapters 5, 8, 9, and 10). The menu items are in alphanumeric order.

- If you select an equation variable from the menu, the variable is pasted to the cursor location, overwriting characters for the length of the variable name.
- If you press 2nd [RCL], select an equation variable from the menu, and then press ENTER, the variable contents are inserted at the cursor location.

If you enter an equation variable, the TI-86 automatically converts it to the equation **exp**=equationVariable. If you enter an expression directly, the TI-86 automatically converts the expression to the equation **exp**=expression.

The equation can have more than one variable to the left of the equal sign, as in A+B=C+sin D.

You can display other menus in the equation-entry editor.

An ellipsis (...) indicates that an entered equation continues beyond the screen. To move directly to the start of the equation, press 2nd (; to move directly to the end, press 2nd ().

Setting Up the Interactive-Solver Editor

In the example, the equation V1=V(R1/(R1+R2)) was entered in the equation-entry editor.

If you entered an expression for eqn, then exp= is the first variable prompt on the interactive-solver editor. After you have stored an equation to **eqn** in the equation-entry editor, press **ENTER** to display the interactive-solver editor.

The equation is displayed across the top of the editor. Each variable in the equation is displayed as a prompt. Values already stored to variables are displayed; undefined variables are blank. The solver menu is displayed on the bottom of the editor (page 206).

```
U1=U(R1/(R1+R2))
U1=
U=
R1=
R2=
bound=(-1e99,1e99)
GRAPH WIND ZOOM TRACE SOLVE
```

bound={-1E99,1E99} is a list containing the default lower bound (**-1E99**) and the default upper bound (**1E99**). You can edit the bounds (below).

Entering Variable Values

To solve for an unknown variable, you must define every other variable in the equation. When you enter or edit a variable value in the interactive-solver editor, the new value is stored to the variable in memory. For any variable, you may enter an expression, which is evaluated when you press $\boxed{\text{ENTER}}$, $\boxed{}$, or $\boxed{\text{EXIT}}$. Expressions must resolve to real numbers at each step of the calculation.

Controlling the Solution with Bounds and a Guess

The solver seeks a solution only within the specified bounds. Whenever you display the interactive-solver editor, the default **bound={-1E99,1E99}** is displayed. These are the maximum bounds for the TI-86.

The TI-86 solves equations through an iterative process. To control that process, you can enter lower bounds and upper bounds that are close to the solution, and enter a guess within those bounds in the prompt for the unknown variable.

Controlling the process with specific bounds and a guess helps the TI-86 in two ways.

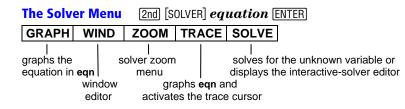
- It finds a solution more quickly.
- It is more likely to find the solution you want when an equation has multiple solutions.

To set more precise bounds at the **bound=** prompt, the syntax is: **bound=**{*lowerBound,upperBound*}

At the prompt for the unknown variable, you may enter a guess or a list of two guesses. If you do not enter a guess, the TI-86 uses (*lowerBound+upperBound*)/2 as a guess.

On the solver graph (page 207), you can guess a solution by moving the free-moving cursor or trace cursor to a point on the graph between *lowerBound* and *upperBound*. To solve for the unknown variable using the new guess, select **SOLVE** from the solver graph menu. The solution is displayed on the interactive-solver editor.

Editing the Equation


To edit the equation stored to **eqn** when the interactive-solver editor is displayed, press until the cursor is on the equation. The equation-entry editor is displayed. The TI-86 automatically stores the edited equation to **eqn** as you edit.

If you store an equation to **eqn** by recalling the contents of an equation variable, such as **y1**, and then edit the equation stored to **eqn**, the original equation (in **y1**, for example) is not changed. Likewise, subsequently editing the contents of the equation variable (**y1**, for example) does not change **eqn**.

lowerBound<upperBound must be true.

You can enter a list variable at the **bound=** prompt if a valid two-element list is stored to it.

If you exit the equation solver, any equation stored to eqn is displayed when you return to the equation solver. You can display other menus in the interactive-solver editor

To display the window editor, select **WIND** from the solver menu.

When you select **GRAPH** or **WIND** from the solver menu, **EDIT** replaces the item you selected on the menu. To return to the interactive-solver editor from the graph or window editor, select EDIT.

Solving for the Unknown Variable

After you have stored all known variable values, set the bounds, and entered a guess (optional), move the cursor to the prompt for the unknown variable.

To solve, select **SOLVE** from the solver menu (F5).

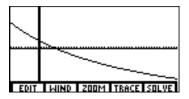
- A small square marks the variable for which you ٠ solved. The solution value is displayed.
- A small square also marks the left-rt= prompt. The ٠ value at this prompt is the value of the left side of the equation minus the value of the right side of the equation, evaluated at the new value of the variable

U1=U(R1/(R1+R2)) V1=10 Ú≡1ØØ R1=6.3333333333333 22=57 bound=(-1£99,1£99) .eft-rt=0 WIND ZOOM TRACE SOLVE

for which you solved. If the solution is precise, left-rt=0 is displayed.

Some equations have more than one solution. To look for additional solutions, you can enter a new guess or set new bounds, and then solve for the same variable.

An ellipsis (...) indicates that the variable value continues beyond the screen. To scroll the value, press) and .


The squares disappear when you edit any value.

After solving, you can edit a variable value or edit the equation, and then solve for the same variable or another variable in the equation.

Graphing the Solution

When you select **GRAPH** from the solver menu (F1), the solver graph is displayed with the free-moving cursor.

- The vertical axis represents the result of the left side of the equation minus the right side of the equation (left-right) at each independent variable value.
- The horizontal axis represents the independent variable for which you solved the equation.

On the graph, solutions exist for the equation where **left-rt=0**, which is where the graph intersects the x-axis. The solver graph:

- Uses the current window and format settings (Chapter 5).
- Does not graph the solution according to the current graphing mode.
- Always graphs a solution as a function graph.
- Does not graph selected functions or turned on stat plots along with the solution.

Solver Graph Tools

You can explore the graph of a solution with the free-moving cursor, as you would on any other graph. When you do, the coordinate values for the variable (the x-axis) and the value **left-rt** (the y-axis) are updated.

To activate the trace cursor, select **TRACE** from the solver menu. Panning, QuickZoom, and entering a specific value (Chapter 6) are available with the trace cursor on the solver graph.

To return to the solver menu from a trace, press EXIT.

You can use the free-moving cursor or trace cursor to select a guess on the graph.

The graph to the right plots

on page 202. The window

yMin=⁻50 xMax=50

the solution from the example

variable values are: xMin=-10

vMax=50

The Solv	er ZOOM	Menu	2nd [SOL	VER] eque	ation ENTER F3
GRAPH	WIND	ZOOM	TRACE	SOLVE	
BOX	ZIN	ZOUT	ZFACT	ZSTD	

Chapter 6 and the A to Z Reference describe these features in detail.

- BOX Draws a box to redefine the viewing window (Chapter 6)
- ZIN Magnifies the graph around the cursor by factors of **xFact** and **yFact** (Chapter 6)
- ZOUT Displays more of the graph around the cursor by factors of **xFact** and **yFact** (Chapter 6)
- ZFACT Displays the ZOOM FACTORS screen (Chapter 6)
- ZSTD Displays the graph in standard dimensions; resets the default window variable values for **Func** graphing mode

The Simultaneous Equation Solver

The simultaneous equation solver solves systems of up to 30 linear equations with 30 unknowns.

Entering Equations to Solve Simultaneously

- Display the SIMULT number screen.
- Enter an integer ≥ 2 and ≤ 30 for the Ø number of equations. The coefficientsentry editor for the first equation (for a system of *n* equations and *n* unknowns) is displayed. The SIMULT ENTRY menu also is displayed.

3 (ENTER) a1,1×1a1,3×3=b1 a1,1= a1,2= a1,3= b1= PREV NEXT CLRg [30L'	Æ

The SIMULT coefficients are not variables.

You can display other menus in the coefficients-entry screen.

To move from the 6 Enter a real or complex value (or an 9 - 8 - 7 - 2 coefficients-entry editor for expression that resolves to one) for each one equation to the editor for coefficient in the equation and for \mathbf{b}_1 , another equation, select which is the solution to that equation. PREV or NEXT. To move among coefficients. Display the coefficients-entry screen for ▼ (or ENTER) or A press , , , or ENTER. From the second and third equation, and enter F2) 5 - - 6 - the last or first coefficient. 4 🖵 2 values for them. these kevs move to the next **-** 1 **-** 5 **-** 9 **-** 7 or previous coefficients-entry screen, if possible. Solve the equations. The results of the F5 6 Ellipses indicate that a value continues beyond the screen. polynomial are calculated and displayed Press And to scroll the on the result screen. Results are not stored value. to variables and cannot be edited. The SIMULT RESULT menu is displayed.

a1,1x1...a1,3x3=b1 a1,1=9 a1,2=8 a1,3=7 b1=21 SOLVE PREV NEXT CLRa a3,1×1…a3,3×3=b3 a3,1=1 a3, 2=5 a3,3=9 b3=7∎ PREV NEXT CLRa SOLVE ×18.149688149688 ×2=-1.13721413721 ×3=1.39293139293 COEFS STOA STOD STOX

Storing Equation Coefficients and Results to Variables

- To store coefficients $a_{1,1}$; $a_{1,2}$;...; $a_{n,n}$ to an $n \times n$ matrix, select STOa.
- To store solutions $b_1, b_2, ..., b_n$ to a vector of dimension *n*, select **STOb**.
- To store the results $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ to a vector of dimension *n*, select **STOx**.

To store a single value on the coefficients-entry screen or result screen, follow these steps. ◄

[ENTER]

- Move the cursor to the = sign next to the 0 coefficient or result you want to store.
- 2 Display the variable **Name=** prompt. ALPHA-lock is on.
- Enter the variable to which you want to 0 store the value.
- Store the value. The variable name **A** becomes an item on the VARS REAL screen or VARS CPLX screen.

	×28-1.13721413721 ×3=1.39293139293
ST0►	×1=.149688149688 ×2∎-1.13721413721 ×3=1.39293139293
[R][E][S][U][L] [T][ALPHA] 2	Sto RESULT2
FNTFR	COEFS STOA STOD STOX

149688149688

To return to the coefficients-entry screen, where you can edit coefficients and calculate new solutions, select **COEFS** from the SIMULT RESULT menu.

To switch to the coefficientsentry screen, select COEFS from the SIMULT RESULT menu.

To solve equations simultaneously on the home screen or in a program. select simult(from the CATALOG.

COEFS STOA

[2nd] [POLY] **The Polynomial Root-Finder**

The root finder solves up to 30th-order real or complex polynomials.

Entering and Solving a Polynomial

POLY Display the POLY order screen. [2nd] [POLY] order=4 4 ENTER Enter an integer between 2 and 30. The Ø ачх^ч+…+а1х+ао=0 coefficients-entry editor is displayed with the a4=**8** a3= equation across the top, the coefficient az= a1= prompts along the left side, and the POLY ao= ENTRY menu on the bottom. CLBa SOLVE a4x^4+…+a1x+a0=0 Enter a real or complex value (or an expression 18 - 5 - 21 6 a4=18 that resolves to one) for each coefficient. **7 16** a3=5 az=21 To clear all coefficients, select **CLRa** from the a1=7 ao=16 POLY ENTRY menu. CLRa SOLVE a4x^4+…+a1x+a0=0 Solve the equation. The roots of the polynomial F5 А ×1∎(.361806892205, ×2=(.361806892205, are calculated and displayed. Results are not X3=(-. stored to variables and you cannot edit them. Also, the POLY RESULT menu is displayed. Results can be complex numbers.

The POLY coefficients are not variables.

You can display other menus in the coefficients-entry editor.

Ellipses indicate that a value continues beyond the screen. Press And to scroll the value.

To switch to the coefficientsentry screen, select **COEFS** from the POLY RESULT menu.

To find roots on the home screen or in a program, select **poly** from the CATALOG.

Storing a Polynomial Coefficient or Root to a Variable

- Move the cursor to the = sign next to the coefficient or root value you want to store.
- 2 Display the **Sto** prompt. ALPHA-lock is on.
- 3 Enter the variable to which you want to store the value.
- **4** Store the value.
- Display the Name= prompt for the coefficients list name. ALPHA-lock is on.
- Enter the list variable name to which you want to store the coefficients.
- **7** Store the polynomial coefficient values.

To return to the coefficients-entry screen, where you can edit coefficients and calculate new solutions, select **COEFS** from the POLY RESULT menu.

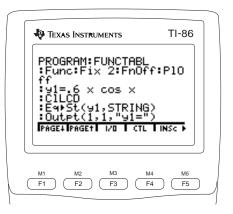
ST0►

ALPHA 1

(ALPHA) **1**

ENTER

F2


[R][O][O][T]

[C][O][E][F]

a+x^+++a1x+a⊡=0 ×1=(.361806892205, ×2=(.361806892205,- ×3=(500695781094, ×4∎(500695781094,)	
Sto ROOT1	
COEFS STOA	
a4x^4+…+a1x+a0=0 x1=(.361806892205,	
x2=(.361806892205,- x3=(500695781094, x4E(500695781094,	
<pre>x2=(.361806892205, - x3=(500695781094,</pre>	

16 Programming

Writing a Program on the TI-86	214
Running a Program	221
Working with Programs	
Running an Assembly Language Program	
Entering and Storing a String	

Writing a Program on the TI-86

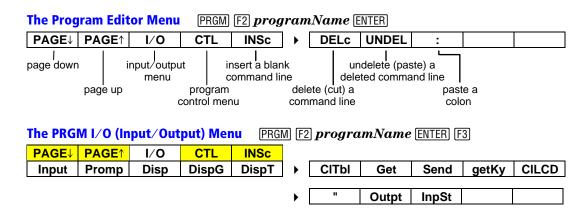
A program is a set of expressions, instructions, or both, which you enter or download. Expressions and instructions in the program are executed when you run the program.

You can use most TI-86 features in a program. Programs can retrieve and update all variables stored to memory. Also, the program editor menu has input/output commands, such as **Input** and **Disp**, and program control commands, such as **If**, **Then**, **For**, and **While**.

The PRGM Menu PRGM

The TI-86 distinguishes between uppercase and lowercase letters in program names. For example, ABC, Abc, and abc would be three different program names.

Creating a Program in the Program Editor


To begin writing a program, select **EDIT** from the PRGM menu (<u>PRGM</u> <u>F2</u>). The program **Name=** prompt and PRGM NAMES menu are displayed. ALPHA-lock is on. Enter a program name from one to eight characters long, beginning with a letter. To edit an existing program, you can select the name from the PRGM NAMES menu.

After you enter a program name, press ENTER. The program editor and program editor menu are displayed. The program name is displayed at the top of the screen. The cursor is on the first command line, which begins with a colon. The TI-86 automatically places a colon at the beginning of each command line.

:		
PAGE4 PAGE1	 	

As you write the program, the commands are stored to the program name.

The PRGM I/O menu items are instructions. The actions they perform occur as the program runs.

To see examples that show how to use $\mathsf{PRGM}\,\mathsf{I/O}$ menu items in programs, refer to the A to Z Reference.

	Input	Displays the current graph and lets you use the free-moving cursor
	Input variable	Pauses a program, displays ? as a prompt, and then stores your response to <i>variable</i>
If you enter an expression for variable at an Input or Prompt prompt, it is	Input promptString,variable Input "string",variable	Pauses a program, displays <i>promptString</i> or <i>string</i> (up to 21 characters) as a prompt, and then stores your response to <i>variable</i>
evaluated and stored.	Input "CBLGET",variable	Although using Get(is preferred on the TI-86, you can use Input to receive <i>variable</i> from a CBL 2/CBL, CBR, or TI-86 (TI-85 compatible)
For Input and Prompt, built-in variables such as y1 and r1 are not valid as variable.	Prompt variableA [,variableB,variableC,]	Displays each <i>variable</i> with ? to prompt you to enter a value for that <i>variable</i>
are not valid as variable.	Disp	Displays the home screen
	Disp valueA,valueB,	Displays each value
To halt the program temporarily after Disp or	Disp variableA,variableB,	Displays the value stored to each variable
DispG and examine what the	Disp "textA","textB",	Displays each text string on the left side of the current display line
program is displaying, enter Pause on the next command	DispG	Displays the current graph
line (page 219).	DispT	Displays the current table and temporarily halts the program
	СІТЫ	Clears the current table if Indpnt: Ask is set (Chapter 7)
	Get(variable)	Gets data from a CBL 2/CBL, CBR, or another TI-86 and stores it to $variable$
	Send(<i>listName</i>)	Sends the contents of <i>listName</i> to a CBL 2/CBL or CBR
	getKy	Returns a number corresponding to the last key pressed, according to the key code diagram (page 217); if no key was pressed, returns ${f 0}$
	CILCD	Clears the home screen (LCD stands for liquid crystal display)

"string"	Specifies the beginning and end of a <i>string</i>
Outpt(row,column,"string") Outpt(row,column,stringName) Outpt(row,column,value) Outpt(row,column,variable)	Displays <i>string</i> , <i>stringName</i> , <i>value</i> , or a value stored to <i>variable</i> beginning at the specified <i>row</i> and <i>column</i> on the display
Outpt("CBLSEND", <i>listName</i>)	Although using Send(is preferred on the TI-86, you can use Outpt(to send <i>listName</i> to a CBL 2/CBL or CBR (for TI-85 compatibility)
InpSt promptString,variable InpSt variable	Pauses a program, displays <i>promptString</i> or ? , and waits for a response; stores the response to <i>variable</i> always as a string; omit quotation marks from your response

The TI-86 Key Code Diagram

When **getKy** is encountered in a program, it returns a number corresponding to the last key pressed, according to the key code diagram to the right. If no key has been pressed, **getKy** returns **0**. Use **getKy** inside loops to transfer control, such as when you create a video game.

This program returns the key code of each key you press.

:Float :O→A :Lbl TOP :getKy→A :If A>O :Disp A :Goto TOP

To break (interrupt) the program, press ON and then press F5.

Then Else For End N While Penez Menu Lbl							INSc	CTL	I/O	PAGE ↑	PAGE↓
Then Lise Tol Lind & While Repea Mend Eb	bl (nu Lbl	Menu	Repea	While	•	End	For	Else	Then	lf
► IS> DS< Pause Retu	tur	se Retur	Pause	DS<	IS>	•					

To see examples that show how to use PRGM CTL menu items in programs, refer to the A to Z Reference.

If, While, and Repeat instructions can be nested.	lf condition	If <i>condition</i> is false (evaluates to 0), the next program command is skipped; if <i>condition</i> is true (evaluates to a nonzero value), the program continues on to the next command
	Then	Following If, executes a group of commands if <i>condition</i> is true
	Else	Following If and Then, executes a group of commands if condition is false
For(loops can be nested.	For(variable,begin,end [,step])	Starting at <i>begin</i> , repeats a group of commands by an optional real <i>step</i> until <i>variable</i> > <i>end</i> ; default <i>step</i> is 1
	End	Identifies the end of a group of program commands; For(, While , Repeat , and Else groups must end with End ; Then groups without an associated Else instruction also must end with End
	While condition	Repeats a group of commands while <i>condition</i> is true; <i>condition</i> is tested when the While instruction is encountered; typically, the expression that defines <i>condition</i> is a relational test (Chapter 3)
	Repeat condition	Repeats a group of commands until <i>condition</i> is true; <i>condition</i> is

	tested when the End instruction is encountered
Menu(item#,"title1", label1[,item#, "title2",label2,])	Sets up branching within a program as selected from menu keys [F1] through [F5]; when encountered, displays the first of up to 3 menu groups (up to 15 <i>titles</i>); when you select a <i>title</i> , the program branches to the <i>label</i> that the <i>title</i> represents; <i>item#</i> is an integer \geq 1 and \leq 15 that specifies <i>title</i> 's menu placement; <i>title</i> is a text string from one to eight characters long (may be abbreviated in the menu)
Lbl label	Assigns a <i>label</i> to a program command; label can be one to eight characters long, starting with a letter
Goto label	Transfers control to the program branch labeled with label
IS>(variable,value)	Adds 1 to <i>variable</i> ; if the answer is > <i>value</i> , the next command is skipped; if the answer is \leq <i>value</i> , the next command is executed; <i>variable</i> cannot be a built-in variable
DS<(variable,value)	Subtracts 1 from <i>variable</i> ; if the answer is $< value$, the next command is skipped; if the answer is $\geq value$, the next command is executed; <i>variable</i> cannot be a built-in variable
Pause	Halts the program so that you can examine results, including displayed graphs and tables; to resume the program, press ENTER
Pause value	Displays <i>value</i> on the home screen so that you can scroll large values, such as lists, vectors, or matrices; to resume, press ENTER
Return	Exits a subroutine (page 224) and returns to the calling program, even if encountered within nested loops; within the main program, stops the program and returns to the home screen (an implied Return exits each subroutine upon completion and returns to the calling program)
Stop	Stops a program and returns to the home screen

DelVar(variable)	Deletes from memory variable (except program names) and its contents
GrStl(function#,graphStyle#)	Specifies the graph style represented by <i>graphStyle</i> # for the function represented by <i>function</i> #; <i>function</i> # is the number part of an equation variable, such as the 5 in y5 ; <i>graphStyle</i> # is an integer ≥ 1 and ≤ 7 , where 1 = \cdot (line), 2 = $\frac{1}{3}$ (thick), 3 = $\frac{1}{3}$ (shade above), 4 = $\frac{1}{3}$. (shade below), 5 = $\frac{4}{3}$ (path), 6 = $\frac{1}{3}$ (animate), and 7 = \cdot . (dotted)
*LCust(<i>item</i> #," <i>title</i> " [, <i>item</i> #," <i>title</i> ",])	Loads (defines) the TI-86 custom menu, which is displayed when you press $\boxed{\text{CUSTOM}}$; item# is an integer ≥ 1 and ≤ 15 ; <i>title</i> is a string with one to eight characters (may be abbreviated in the menu)

Entering a Command Line

You can enter on a command line any instruction or expression that you could execute on the home screen. In the program editor, each new command line begins with a colon. To enter more than one instruction or expression on a single command line, separate each with a colon.

To move the cursor down to the next new command line, press ENTER. You cannot move to the next new command line by pressing . However, you can return to existing command lines to edit them by pressing .

Menus and Screens in the Program Editor

TI-86 menus and screens may be altered when displayed in the program editor. Menu items that are invalid for a program are omitted from menus. Menus that are not valid in a program, such as the LINK menu or MEM menu, are not displayed at all.

When you select a setting from a screen such as the mode screen or graph format screen, the setting you select is pasted to the cursor location on the command line.

A command line that is longer than the screen is wide automatically continues at the beginning of the next line.

All CATALOG items are valid in the program editor. Variables to which you typically store values from an editor, such as the window variables, become items on program-only menus, such as the GRAPH WIND menu. When you select them, they are pasted to the cursor location on the command line.

Running a Program

- Paste the program name to the home screen. Either select it from the PRGM NAMES menu (PRGM [F1]) or enter individual characters.
- 2 Press ENTER. The program begins to run.

Each result updates the last-answer variable **Ans** (Chapter 1). The TI-86 reports errors as the program runs. Commands executed during a program do not update the previous-entry storage area ENTRY (Chapter 1).

The example program below is shown as it would appear on a TI-86 screen. The program:

- Creates a table by evaluating a function, its first derivative, and its second derivative at intervals in the graphing window
- Displays the graph of the function and its derivatives in three different graph styles, activates the trace cursor, and pauses to allow you to trace the function

To resume the program after a pause, press ENTER.

```
PROGRAM: FUNCTABL
                              The name of the program
                              Set graphing and decimal modes (mode screen); turn off
:Func:Fix 2:FnOff:Pl0
ff
                              functions (GRAPH VARS menu) and plots (STAT PLOT menu)
: y1 = .6 \times cos \times
                              Define the function (assignment statement)
:C1LCD
                              Clear the home screen (PRGM I/O menu)
                              Convert y1 into the string variable STRING (STRNG menu)
:Eq▶St(y1,STRING)
                              Display y1= at row 1, column 1 (PRGM I/O menu)
:Outpt(1,1,"y1=")
:Outpt(1,4,STRING)
                              Display value stored to STRING at row 1, col. 4 (PRGM I/O menu)
:Outpt(8,1,"PRESS ENT
                              Display PRESS ENTER at line 8, column 1 (PRGM I/O menu)
ER")
:Pause
                              Pause the program (PRGM CTL menu)
:C1LCD
                              Clear the home screen (PRGM I/O menu)
                              Define y2 as the first derivative of y1 (CALC menu)
:y2=der1(y1,x,x)
:y3=der2(y1,x,x)
                              Define y3 as the second derivative of y1 (CALC menu)
                              Display the table (PRGM I/O menu)
:DispT
:GrStl(1,1):GrStl(2,2
                              Set graph styles for v1, v2, and v3 (PRGM CTL menu)
):GrSt1(3.7)
                              Store 2 to the window variable xRes (GRAPH WIND menu)
:2→xRes
:ZTrig
                              Set the viewing window variables (GRAPH ZOOM menu)
:Trace
                              Display the graph, activate trace cursor, and pause (GRAPH menu)
```

Breaking (Interrupting) a Program

To break (interrupt) the program, press ON. The ERROR 06 BREAK menu is displayed.

- To display the program editor where the interruption occurred, select GOTO (F1).
- To return to the home screen, select **QUIT** (F5).

Working with Programs

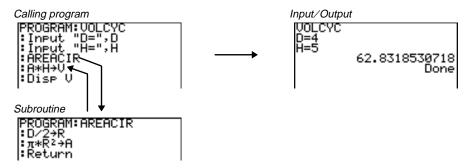
Managing Memory and Deleting a Program

To check whether adequate memory is available for a program you want to enter or download, display the Check RAM screen ([2nd] [MEM] [F1]; Chapter 17). To increase available memory, consider deleting selected items or data types from memory (Chapter 17).

Editing a Program

After you write a program, you can display it in the program editor and edit any command line.

- Display the program editor (PRGM F2). The PRGM NAMES menu also is displayed.
 - 2 Enter the name of the program you want to edit. Either select the name from the PRGM NAMES menu or enter the individual characters.
 - 3 Edit the program command lines.
 - Move the cursor to the appropriate location, and then delete, overwrite, or insert characters.
 - Press <u>CLEAR</u> to clear the entire command line, except for the leading colon, and then enter a new program command.
 - ◆ Select program editor menu items INSc (F5) and DELc (MORE F1) to insert and delete command lines.


The program editor does not display a \downarrow to indicate that command lines continue beyond the screen.

Calling a Program from Another Program

On the TI-86, any stored program can be called from another program as a subroutine. In the program editor, enter the subroutine program name on a command line by itself.

- Press PRGM to display the PRGM NAMES menu, and then select the program name.
- Use ALPHA keys and alpha keys to enter the program name's individual characters.

When the program name is encountered as the calling program runs, the next command executed is the first command in the subroutine. It returns to the next command in the calling program when it encounters **Return** (or implied **Return**) at the end of a subroutine.

label used with **Goto** and **LbI** is local to the program where it is located. *label* in one program is not recognized by another program. You cannot use **Goto** to branch to a *label* in another program.

Copying a Program to Another Program Name

- 1 Display a new or existing program in the program editor.
- 2 Move the cursor to the command line on which you want to copy a program.
- **3** Display the **Rcl** prompt ([2nd [RCL]).
- Enter the name of the program you want to copy. Either select the name from the PRGM NAMES menu or enter individual characters.

• Press ENTER. The contents of the recalled program name are inserted into the other program at the cursor location.

Using and Deleting Variables within a Single Program

If you want to use variables within a program but do not need them after the program is run, you can use **DelVar(** within the program to delete the variables from memory.

The program segment to the right uses the variables A and B as counters and then deletes them from memory.

:3→B :For (A,1,100,1) :B+A→B :End :Disp A :Disp B :DelVar(A) :DelVar(B)

Running an Assembly Language Program

An assembly language program is a program that runs much faster and has greater control of the calculator than the regular programs described in this chapter. You can download and run TI-created assembly language programs to add features to your TI-86 that are not built in. For example, you can download the TI-83 finance or inferential statistics features to use on your TI-86.

TI assembly language programs and other programs are available on TI's World Wide Web site: http://www.ti.com/calc

When you download an assembly language program, it is stored among the other programs as a PRGM NAMES menu item. You can:

- Transmit it using the TI-86 communication link (Chapter 18). ٠
- Delete it using the MEM DELETE: PRGM screen (Chapter 17).
- Call it from another program as a subroutine (page 224).

To run an assembly ProgramName, the syntax is: Asm(assembly ProgramName)

If you write an assembly language program, use the two instructions below from the CATALOG.

AsmComp(AsciiAssemblyPrgmName, HexAssemblyPrgmName)	Compiles an assembly language program written in ASCII and stores the hex version
AsmPrgm	Identifies an assembly language program; must be

entered as the first line of an assembly language program

Entering and Storing a String

A string is a sequence of characters that you enclose within quotation marks.

- A string defines characters to be displayed in a program.
- A string accepts input from the keyboard in a program.

To enter a string directly, the syntax is:

"string"

To concatenate (join together) two or more strings, use [+]. The syntax is: "stringA"+"stringB"+"stringC"+...

You do not use quotation marks to enter a string name. In concatenation, you can substitute stringName for any "string".

sub In9th Ea#St St#E

The STRNG (String) Menu 2nd [STRNG] " sub Ingth Eq>St St>Eq

" also marks the start and end of a formula to be attached to a list; it is also an item on the list editor menu (Chapter 11).

Begin these steps on a blank line on the home screen or in the program editor.

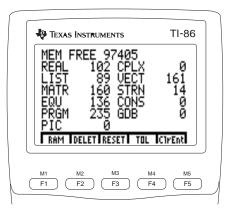
To evaluate the contents of a string, you must use **St>Eq(** to convert it to an equation.

"string"

sub("string",begin,length)
sub(stringName,begin,length)
Ingth "string" or Ingth stringName
Eq▶St(equationVariable,stringName)
St▶Eq(stringName,equationVariable)

Creating a String

- 1 Display the STRNG menu.
- 2 Enter the open quotation mark, then the string **SOLVE & GRAPH**, and then the close quotation mark.
- 3 Store the string to the string variable name LABEL.


Marks the start and end of string

Returns a subset of "string" or stringName, starting at begin character place and length characters long Returns the number of characters in "string" or stringName Converts equationVariable contents to stringName Converts stringName to equationVariable

[2nd] [STRNG] Ingth Egest Ste [F1] [ALPHA] [ALPHA] "SOLVE & GRAPH"M [S][O][L][V][E][_] 2nd [CHAR] [F1] [F3] [...] [G][R][A][P][H] [2nd] [STRNG] [F1] п sub In9th EabSt StbEa "SOLVE GRAPH"→LABEL ALPHA STO 8 [L][A][B][E][L] SOLVE & GRAPH [ENTER]

Memory Management

Checking Available Memory	230
Deleting Items from Memory	231
Resetting the TI-86	

Checking Available Memory

For information on **TOL** (the tolerance editor), refer to the Appendix.

The MEM (Memory) Menu [2nd] [MEM] RAM DELET RESET TOL CIrEnt check-RAM memory/default clears ENTRY reset menu screen storage area memory delete tolerance editor menu

Checking Memory Usage 2nd [MEM] [F1]

When all memory is cleared and all defaults are set, the standard TI-86 has **98,224** bytes of available random-access memory (RAM). As you store information to RAM, you can monitor memory allocation on the Check RAM screen.

MEM FRI REAL LIST MATR EQU PRGM PIC	EE 98224 19 CPLX 39 VECT 0 STRN 0 CONS 18 GDB	ଉଡଡଡଡ
RAM DEL	ET RESET TOL (CirEnt

MEM FREE reports the total number of bytes available in RAM. Conversely, all other numbers on the screen report

the number of bytes that each data type currently occupies. For example, if you were to store a 50-byte matrix in memory, the **MATR** total would increase to **50** bytes, while the **MEM FREE** total would decrease by 50 to **98174** bytes.

To display the number of bytes that a specific variable occupies, display the DELETE screen for that data type (page 231). Scroll the screen, if necessary.

Deleting Items from Memory

The MEN	1 DELET (Delete) N	/lenu [2nd) [MEM]						
ALL	REAL	CPLX	LIST	VECTR	►	MATRX	STRNG	EQU	CONS	PRGM

GDB

[2nd] [MEM] [F2]

[MORE] [F3]

 $\overline{}$

ENTER

PIC

Each MEM DELET menu item displays the deletion screen for that data type. For example, when you select **LIST**, the MEM DELETE:LIST screen is displayed. Use the DELETE screens to delete any user-created variable and the information stored to it.

- Select **DELET** from the MEM menu to display the MEM DELET menu.
- 2 Select the data type of the item you want to delete. To scroll down to the next six items or up to the previous six items, select PAGE↓ or PAGE↑.
- 3 Move the selection cursor () to the item you want to delete (y5). The uppercase items are in alphanumeric order, followed by the lowercase items in alphanumeric order.
- Delete the item. To delete other items on the screen, repeat steps 3 and 4.

DELETE:EQU ▶91 92 93 94 95 PAGE1 PAGE1

DELETE:EQU	14 EQU
91	14 EQU
92	14 EQU
93	14 EQU
▶94	14 EQU
PAGE+ PAGET	

To delete a parametric equation, delete the **xt** component.

In the example, the equation $y5=x^3-x^2+4x-1$ is deleted.

To move directly to the first item beginning with any letter, enter that letter; ALPHA-lock is on.

Resetting the TI-86

The MEM RESET (Reset) Menu 2nd [MEM] F3

RAM	DELET	RESET	TOL	CIrEnt
ALL	MEM	DFLTS		

ALL When confirmed, all data is cleared and memory is reset; both messages are displayed

MEM When confirmed, clears all stored data from memory; Mem Cleared is displayed

DFLTS When confirmed, resets all defaults; Defaults Set is displayed

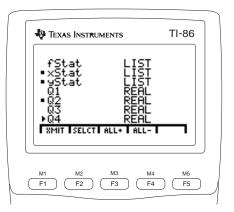
When you select ALL, MEM, or DFLTS, a confirmation menu is displayed.

- To confirm the selected reset, select **YES** (press **F**4).
- To cancel the selected reset, select **NO** (press F5).

ClrEnt (Clear Entry) 2nd [MEM] F5

The TI-86 retains as many previous entries as possible in ENTRY, up to a capacity of 128 bytes.

To clear the ENTRY storage area of all entries, execute **CIrEnt** on a blank line on the home screen ([2nd] [MEM] [F5] [ENTER).


ClrEnt -	Done
•	

Before resetting all memory, consider deleting selected information to increase memory capacity (page 231).

When you select and confirm ALL or DFLTS, the default contrast is reset; to adjust it, use 2nd or 2nd (Chapter 1).

18 The TI-86 Communication Link

TI-86 Linking Options	234
Connecting the TI-86 to Another Device	
Selecting Data to Send	
Preparing the Receiving Device	
Transmitting Data	
Receiving Transmitted Data	

TI-86 Linking Options

Using the unit-to-unit cable included with the TI-86, you can transmit data between the TI-86 and several other devices.

Linking Two TI-86s

You can link two TI-86 units and select the data types to be transmitted, including programs. You can back up the entire memory of a TI-86 onto another TI-86.

Linking a TI-86 and a TI-85

You can select the data types, including programs, to transfer from a TI-85 to a TI-86. You can send most variables and programs from a TI-86 to a TI-85 using **SND85** (page 239), except lists, vectors, or matrices that exceed TI-85 capacity.

When you run a TI-85 program on a TI-86, the TI-85 **PrtScrn** program instruction is not valid. Also, the EOS implied multiplication on the TI-86 differs from the TI-85 (Appendix). For example, the TI-85 interprets **sin 2x** as **sin (2x)**; the TI-86 interprets **sin 2x** as **(sin 2)**x.

Linking a TI-86 and a CBL 2/CBL or CBR System

The Calculator-Based Laboratory[™] (CBL 2[™]/CBL[™]) and Calculator-Based Ranger[™] (CBR[™]) systems are optional TI accessories that collect data from physical occurrences, such as science experiments. The CBL 2/CBL and CBR store data to lists, which you can transmit to a TI-86 and analyze. You can transmit list names to a CBL 2/CBL or CBR from a TI-86.

Linking a TI-86 and a PC or Macintosh

TI-86 TI-GRAPH LINK $^{\rm TM}$ is an optional system that links a TI-86 with an IBM $^{\rm @}$ -compatible or Macintosh $^{\rm @}$ computer.

Downloading Programs from the Internet

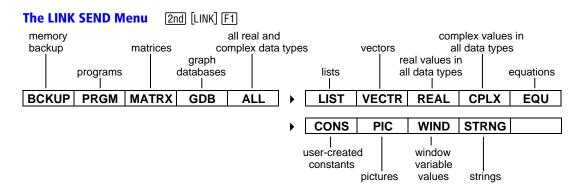
If you have TI-GRAPH LINK and internet services, you can download programs from TI's World Wide Web site at:

http://www.ti.com/calc

You can download various programs from TI's web site, including assembly language programs that add features such as TI-83 finance and inferential statistics. The site also links to many other TI-86 web sites maintained by user groups, high schools, universities, and individuals.

Connecting the TI-86 to Another Device

Before you begin to transmit data to or from the TI-86, connect it to the other device.


- Firmly insert one end of the unit-to-unit cable into the port on the bottom edge of the calculator.
- 2 Firmly insert the other end of the cable into the other device (or PC adapter).

	The LINK	(Menu	[2nd] [LINK]	
	SEND			
The link menus are not available in the program editor.	 menu of da types to se re		 nenu of data types to send to a TI-85 le	

Selecting Data to Send

The CBL 2/CBL. CBR. and TI-86 TI-GRAPH LINK have built-in Silent Link. which eliminates the need for you to set up the devices to send or receive.

To list the variables for a specific data type on a selection screen, select the data type from the LINK SEND menu. When you select **BCKUP**, the message **Memory Backup** is displayed.

ZMIT

Memory Backup

Initiating a Memory Backup

To initiate a memory backup, select **BCKUP** from the LINK SEND menu (2nd [LINK] F1 F1). The screen to the right is displayed.

To complete memory backup, prepare the other unit to receive data transmission (page 239), and then select **XMIT** from the memory backup menu ($\boxed{F1}$).

Warning: When you transmit **BCKUP**, the transmitted memory overwrites all memory in the receiving unit; all information in the memory of the receiving unit is lost. To cancel initiation of a memory backup, press [EXIT].

As a safety check to prevent accidental loss of memory, when the receiving calculator is notified of an incoming backup transmission, it displays the warning message and confirmation menu, as shown in the screen to the right.

• To continue the backup transmission, select **CONT**. The backup transmission continues, replacing all receiving-calculator memory with the backup data.

	WARNING Memory Backup	
I	CONT EXIT	

• To cancel backup and retain all receiving-calculator memory, select **EXIT**. Selecting Variables to Send

If no data of the type you select is stored in memory, the message is displayed: NO VARS OF THIS TYPE.

If a transmission error occurs during a backup, the receiving-calculator memory is reset. When you select any LINK SEND menu item, except **BCKUP** or **WIND**, each variable of the selected data type is listed in alphanumeric order on a selection screen. The screen to the right is the SEND ALL screen ([2nd] [LINK] [F1] [F5]).

- The data type of each variable is specified.
- Small squares indicate that **xStat**, **yStat**, and **Q2** are selected to be sent.

• The selection cursor is next to **Q4**.

To select a specific variable to be sent, use \bigtriangledown and \frown to move the selection cursor next to the variable, and then select **SELCT** (F2) from the selection screen menu.

- To select all variables of this type, select ALL+ from the selection screen menu (F3).
- To deselect all variables of this type, select ALL- from the selection screen menu (F4).

To complete transmission of the selected variables, prepare the other unit to receive data transmission (page 239), and then select **XMIT** from the selection screen menu ([F1]).

The SEND WIND (Window Variables) Screen

When you select **WIND** from the LINK SEND menu (2nd [LINK] [F1] MORE [MORE [F3]), the SEND WIND screen is displayed. Each SEND WIND screen item represents the window variables, format settings, and any other graph-screen data for that TI-86 graphing mode and for **ZRCL** (user-created zoom). The screen to the right shows that the graph screen data for **Func** and **DifEq** graphing modes are selected.

●Func	WIND
Pol	WIND
Param	WIND
●DifE۹	WIND
ZRCL	WIND
XMIT SELCT	ALL+ ALL-

Func Select to send Func graphing mode window variable values and format settings

- **Pol** Select to send **Pol** graphing mode window variable values and format settings
- **Param** Select to send **Param** graphing mode window variable values and format settings
- DifEq Select to send DifEq graphing mode window variable values, difTol, axes settings, and format settings
- **ZRCL** Select to send user-created zoom window variables, and format settings in any mode

To complete transmission of the selected variables, prepare the other unit to receive data transmission (below), and then select **XMIT** from the memory backup menu (F1).

Sending Variables to a TI-85

The steps for selecting variables to send to a TI-85 are the same as those for selecting variables to send to a TI-86. However, the LINK SND85 menu has fewer items than the LINK SEND menu.

The TI-86 has more capacity for lists, vectors, and matrices than the TI-85. If you send to the TI-85 a list, vector, or matrix that has more elements than the TI-85 allows, the elements that exceed TI-85 capacity are truncated.

The LINK SND85 (Send Data to TI-85) Menu					[2]	nd) [LINK] (F	3		
MATRX	LIST	VECTR	REAL	CPLX	►	CONS	PIC	STRNG	

Preparing the Receiving Device

To prepare a PC to receive data, consult the TI-GRAPH LINK *guidebook.*

To prepare a TI-86 or TI-85 to receive data transmission, select **RECV** from the LINK menu (2nd [LINK] [F2]). The message **Waiting** and the busy indicator are displayed. The calculator is ready to receive transmitted items.

Waitin9

To cancel receive mode without receiving items, press ON. When the LINK TRANSMISSION ERROR message is displayed, select EXIT from the menu (F1). The LINK menu is displayed.

Transmitting Data

After you select data types on the sending unit and prepare the receiving unit to receive data, you can begin transmitting.

To begin transmitting, select XMIT on the selection screen menu of the sending calculator (F1).

To interrupt transmission, press ON on either calculator. When the LINK TRANSMISSION ERROR message is displayed, select EXIT from the menu (F1). The LINK menu is displayed.

Receiving Transmitted Data

As the TI-86 receives transmitted data, each variable name and data type is displayed line by line. If all selected items are transmitted successfully, the message **Done** is displayed. To scroll the transmitted variables, press **¬** and **¬**.

During transmission, if a transmitted variable name is stored already in the memory of the receiving calculator, transmission is interrupted. The duplicated variable name, its data type, and the DUPLICATE NAME menu are displayed, as shown in the screen to the right.

To resume or cancel transmission, you must select an item from the DUPLICATE NAME menu.

- **RENAM** Displays the **Name=** prompt; enter a unique variable name; press <u>ENTER</u> to continue transmission
- **OVERW** (overwrite) Replaces data stored to the receiving unit's variable with sent variable data
- **SKIP** Does not overwrite the receiving unit's data; attempts to send the next selected variable
- **EXIT** Cancels the data transmission

Repeating Transmission to Several Devices

After transmission is complete, the LINK menu is displayed and all selections remain. You can transmit the same selections to a different TI-86 without having to re-select data.

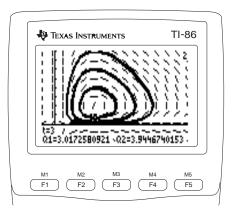
To repeat a transmission with another device, disconnect the unit-to-unit cable from the receiving unit; connect it to another device; prepare the device to receive data; and then select **SEND**, then **ALL**, and then **XMIT**.

Error Conditions

A transmission error occurs after a few seconds if:

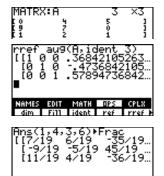
- The cable is not connected to the port of the sending calculator.
- The cable is not connected to the port of the receiving calculator.
- The receiving unit is not set to receive transmission.
- You attempt a backup between a TI-86 and a TI-85.

Insufficient Memory in Receiving Unit


If the receiving unit does not have sufficient memory to receive an item, the receiving unit displays LINK MEMORY FULL and the variable name and data type.

- To skip the variable, select **SKIP**. Transmission resumes with the next item.
- To cancel transmission altogether, select **EXIT**.

If the cable is connected but a transmission error occurs, push the cable in more firmly to both calculators and try again.



244
245
246
248
250
252
254
256
258
260

Using Math Operations with Matrices

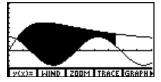
- 1 In the matrix editor, enter matrix **A** as shown.
- **2** On the home screen, select **rref** from the MATRX OPS menu.
- 3 To append a 3×3 identity matrix to matrix A, select aug from the MATRX OPS menu, enter A, select ident from the MATRX OPS menu, and then enter 3. Execute the expression.
- Enter Ans (to which the matrix from step 3 is stored). Define a submatrix that contains the solution portion of the result. The submatrix begins at element (1,4) and ends at element (3,6).
- Select ► **Frac** from the MATH MISC menu and display the fractional equivalent of the submatrix.
- 6 Check the result. Set the decimal mode to 11 (the last 1) Select round from the MATH NUM menu for the product of the fractional equivalent of the submatrix times A.

Displaying the result matrix elements to 11 decimal places illustrates accuracy.

Finding the Area between Curves

Find the area of the region bounded by:

 $f(x)=300 \text{ x/}(x^2+625)$ $g(x)=3 \cos (.1 \text{ x})$ x=75


1 In **Func** graphing mode, select **y**(**x**)= from the GRAPH menu to display the equation editor and enter the equations as shown.

y1=300 x/(x²+625) y2=3 cos (.1 x)

2 Select WIND from the GRAPH menu and set the window variables as shown.

xMin=0	xMax=100	xScl=10	yMin=⁻5	yMax=10	yScl=1	xRes=1
--------	----------	---------	---------	---------	--------	--------

- 3 Select GRAPH from the GRAPH menu to display the graph screen.
- Select ISECT from the GRAPH MATH menu. Move the trace cursor to the intersection of the functions. Press ENTER to select y1. The cursor moves to y2. Press ENTER. Then press ENTER again to set the current cursor location as the initial guess. The solution uses the solver. The value of x at the intersection, which is the lower limit of the integral, is stored to Ans and x.
- The area to integrate is between y1 and y2, from x=5.5689088189 to x=75. To see the area on a graph, return to the home screen, select Shade from the GRAPH DRAW menu, and execute this expression:

Shade(y2,y1,Ans,75)

- **6** Select **TOL** from the MEM menu and set **tol=1E-5**.
- On the home screen, compute the integral with fnInt (CALC menu). The area is 325.839961998. fnInt(y1-y2,x,Ans,75)

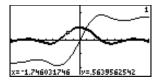
If necessary, select ALLfrom the equation editor menu to deselect all functions. Also, turn off all stat plots.

The Fundamental Theorem of Calculus

Consider these three functions:

 $F(x)_1 = (\sin x)/x \qquad F(x)_2 = \int_0^x (\sin t)/t \qquad F(x)_3 = \frac{d}{dx} \int_0^x (\sin t)/t \, dt$

1 In **Func** graphing mode, select **y(x)=** from the GRAPH menu, and then enter the functions and set graph styles in the equation editor as shown. (**fnInt** and **nDer** are CALC menu items.)


- 2 Select TOL from the MEM menu to display the tolerance editor. To improve the rate of the calculations, set tol=0.1 and δ =0.001.
- 3 Select **WIND** from the GRAPH menu and set the window variable values as shown.

xMin=-10 xMax=10 xScl=1 yMin=-2.5

yMax=2.5 yScI=1

xRes=4

- Select **TRACE** from the GRAPH menu to display the graph and the trace cursor.
- Trace y1 and y3 to verify that the graph of y1 and the graph of y3 are visually indistinguishable.

The inability to visually distinguish between the graphs of y1 and y3 graphically supports the fact that:

 $\frac{\mathrm{d}}{\mathrm{d}x} \int_0^x (\sin t)/t \,\mathrm{d}t = (\sin x)/x$

In the example, nDer(y2,x) only approximates y3; you cannot define y3 as der1(y2,x).

If necessary. select ALL-

from the equation editor menu to deselect all

stat plots.

functions. Also, turn off all

- 6 Deselect **y2** in the equation editor.
- Select TBLST from the TABLE menu. Set TblStart=1, ∆Tbl=1, and Indpnt: Auto.
- Select TABLE from the TABLE menu to display the table.Compare the solution of y1 with the solution of y3 to numerically support the formula above.

X	91	93	
- NM-FMB	.841471 .4546487 .04704 189201 191785 046569	.8414709 .4546487 .04704 189201 191785 046569	
×=1			
TBLST SEL	CT X	y I	

Electrical Circuits

A measurement device has measured the DC current (C) in milliamperes and voltage (V) in volts on an unknown circuit. From these measurements, you can calculate power (P) in milliwatts using the equation CV=P. What is the average of the measured power?

With the TI-86, you can estimate the power in milliwatts at a current of 125 milliamperes using the trace cursor, the interpolate/extrapolate editor, and a regression forecast.

In two consecutive columns of the list editor, store the current measurements shown below to the list name CURR and the voltage measurements shown below to the list name VOLT. {10,20,40,60,80,100,120,140,160}→CURR

 $\{2, 4.2, 10, 18, 32.8, 56, 73.2, 98, 136\}$

CURR	YOLT	POINTER
10	2.5	
50	10	
60	18	
POWER =CI	JRR*VOL1	Г
< 2	NAMES	" OPS
CURR POL	NER YOLT (fStat 🛛 xStat 🕨

- $\textbf{2} \quad \text{In the next column of the list editor, enter the list name } \textbf{POWER} \ .$
- Enter the formula CURR *VOLT in the list editor entry line for POWER. Press ENTER to calculate the values for power and store the answers to the list name POWER.

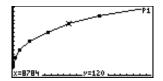
CURR	YOLT	POWER
10	2.	20
40	10	400
ÉÓ	10	1080
100	32.8	2624
POWER(1) =20		
< 1	> NAMES	I UPS D

4 Select **WIND** from the GRAPH menu and set the window variable values as shown.

xMin=0 xMax=max(POWER) xScl=1000 yMin= 0 yMax=max(CURR) yScl=10 xRes=4

From the home screen, select FnOff from the CATALOG and press ENTER to deselect all functions in the equation editor. Select Plot1(from the CATALOG and set up a stat plot with POWER on the x-axis and CURR on the y-axis.

The **7**s and **8**s in parentheses specify the 7th and 8th elements of **POWER** and **CURR**.


To enter each regression after LinR, press [2nd [ENTRY] and edit as needed.

- 6 Select **TRACE** from the GRAPH menu to display the stat plot and trace cursor on the graph screen.
- Trace the stat plot to approximate the value of POWER at CURR=125. With this statistical data, the closest to CURR=125 that you can trace to is CURR=120 (on the y-axis).
- Select INTER from the MATH menu to display the interpolate/extrapolate editor. To interpolate POWER at CURR=125, enter the nearest pairs:

x1=POWER(7)	y1=CURR(7)
x2=POWER(8)	y2=CURR(8)

- **9** Enter **y=125** and solve for **x**.
- On the home screen, select LinR from the STAT CALC menu to fit the linear regression model equation to the data stored to POWER and CURR. Write down the value of the result variable corr.
- Fit the logarithmic (LnR), exponential (ExpR), and power (PwrR) regressions to the data, writing down the value of corr for each regression. Compare the corr values of each regression to determine which model fits the data most accurately (the corr value closest to 1).
- Execute the most accurate regression again, and then select FCST from the STAT menu. To forecast POWER at CURR=125, enter y=125 and solve for x.

Compare this answer with the answer returned in step 9.

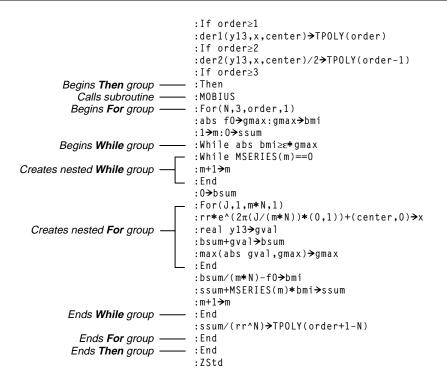
INTERPOLATE ×1=8784	
91=120	
×2=13720 92=140	
•x=10018	
9-123	SOLVE

LinR POWER,CURR

losest to T).	
FORECAST: PwrRe • x=9393.627651 y=125	9 10757
	SOLVE

Program: Taylor Series

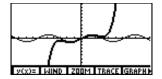
When you run this program, you can enter a function and specify the order and center point. Then the program calculates the Taylor Series approximation for the function and plots the function you entered. This example shows how to call a program from another program as a subroutine.


Before you enter the program TAYLOR, select EDIT from the PRGM menu, enter MOBIUS at the Name= prompt, and then enter this brief program to store the Mobius Series. The program TAYLOR calls this program and runs it as a subroutine.

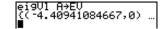
```
PROGRAM:MOBIUS
:{1,-1,-1,0,-1,1,-1,0,0,1,-1,0,-1,1,1,0,-1,0,-1,0}→MSERIES
:Return
```

2 Select **EDIT** from the PRGM menu, enter **TAYLOR** at the **Name=** prompt, and then enter this program to calculate the Taylor Series.

PROGRAM: TAYLOR :Func:FnOff :y14=pEval(TPOLY,x-center) :GrSt1(14,2) ε is on the CHAR GREEK menu -— :1E-9**→**ε:.1→rr :C1LCD User enters equation function -— :InpSt "FUNCTION: ",EQ :St►Eq(E0,v13) User enters order -— :Input "ORDER: ",order :order+1→dimL TPOLY :Fill(0,TPOLY) User enters center ----- : Input "CENTER: ", center :evalF(y13,x,center) \rightarrow f0 $:f0 \rightarrow TPOLY(order+1)$


The higher-order derivative values necessary for this program are calculated numerically based on the methods in "Numerical Differentiation of Analytic Functions," J. N. Lyness and C. B. Moler, SIAM Journal of Numerical Analysis 4 (1967): 202-210.

The first eigenvalue is real, since the imaginary part is **0**.


If necessary, select ALLfrom the equation editor menu to deselect all functions. Also, turn off all stat plots.

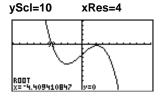
- On the home screen, select TAYLOR from the PRGM NAMES menu, and then press ENTER to run the program.
- When prompted, enter: FUNCTION: sin x
 ORDER: 5
 CENTER: 0

Characteristic Polynomial and Eigenvalues

- In the matrix editor or on the home screen, enter matrix A as shown. $\begin{bmatrix} -1, 2, 5 \end{bmatrix} \begin{bmatrix} 3, -6, 9 \end{bmatrix} \begin{bmatrix} 2, -5, 7 \end{bmatrix} \Rightarrow A$
- 2 On the home screen, select **eigVI** from the MATRX MATH menu to find the complex eigenvalues for the matrix **A** and store them to the list name **EV**.

Graph the characteristic polynomial Cp(x) of matrix A without knowing the analytic form of Cp(x) based on the formula Cp(x)=det(A-x*I). In Func graphing mode, select y(x)= from the GRAPH menu and enter the function in the equation editor as shown.

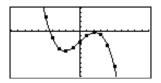
vMax=50


\y1=det (A-x*ident 3)

4 Select **WIND** from the GRAPH menu and set the window variable values as shown.

 Select ROOT from the GRAPH MATH menu and use it to display the real eigenvalue interactively. Use Left Bound=-5, Right Bound=-4, and Guess=-4.5.

Compare the root (\mathbf{x} value) you displayed interactively with the first element of the result list in step 2.



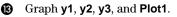
Next, use the list editor and a degree-three polynomial regression to find an analytic formula in terms of **x** for the characteristic polynomial **y1=det(A-x*ident 3)**. Create two lists that you can use to find the analytic formula.

- In the list editor, create elements for xStat by entering the expression seq(N,N,-10,21) in the xStat entry line. seq is on the MATH MISC menu.
- Create elements for yStat by attaching the formula "y1(xStat)" to yStat in the entry line. The expression is evaluated when you press ENTER or exit the list editor.
- On the home screen, select Plot1(from the CATALOG and execute Plot1(2,xStat,yStat,1) to turn on Plot1 as an xyLine plot using the lists xStat and yStat.
- Select GRAPH from the GRAPH menu to display Plot1 and y1 on the graph screen.

xstat =seq(N,N, -10,21)■

xStat	astat	fStat 2
-10		
-9		
-7		
yStat ="∙	91(xStat	t)"∎
- C - C	NAMES	" OPS
EV FS	at xStat :	vStat

- P3Re9 xStat,yStat,y2
- CubicReg y=ax³+bx²+cx+d n=32 PRegC= {-1 -1∈-12 14 -23.99…]


To clear the menus from the graph screen, press [CLEAR].

On the home screen, select P3Reg from the STAT CALC menu.
 Execute P3Reg xStat,yStat,y2 to find the explicit characteristic polynomial in terms of x and store it to y2.

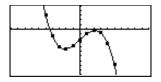
The cubic regression coefficients stored in the result list **PRegC** suggest that a=-1, b=0, c=14, and d=-24. So the characteristic polynomial seems to be $Cp(x)=x^3+14x-24$.

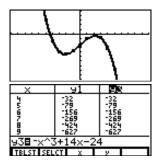
- Support this conjecture by graphing y1, y2 (to which Cp(x) is stored), and Plot1 together.
- In the equation editor, enter the apparent characteristic polynomial of matrix A and select ¥ (thick) graph style as shown.

[™]y3=⁻x^3+14x-24

Deselect **y2** in the equation editor.

Select **TABLE** from the TABLE menu to display **y1** and **y3** in the table.


Compare the values for the characteristic polynomial.


Convergence of the Power Series

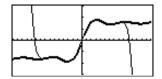
A closed-form analytic antiderivative of $(\sin x)/x$ does not exist. However, substituting t for x, you can find an infinite series analytic solution by taking the series definition of sin t, dividing each term of the series by t, and then integrating term by term to yield:

$$\sum_{n=1}^{\infty} \text{-}1^{n+1} t^{2n-1} / ((2n \text{ -}1)(2n \text{ -}1)!)$$

Plot finite approximations of this power series solution on the TI-86 with ${\sf sum}$ and ${\sf seq}.$

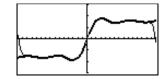
- **1** Select **TOL** from the MEM menu and set **tol=1**.
- 2 On the mode screen, set Radian angle mode and Param graphing mode.
- 3 In the equation editor, enter the parametric equations for the power series approximation as shown. Select **sum** and **seq** from the LIST OPS menu. Select **!** from the MATH PROB menu.

\xt1=t yt1=sum seq((-1)^(j+1)t^(2j-1)/((2j-1)(2j-1)!),j,1,10,1)


In the equation editor, enter the parametric equations as shown to plot the antiderivative of (sin x)/x and compare it with the plot of the power series approximation. (Select **fnInt** from the CALC menu.)

%xt2=t yt2=fnInt((sin w)/w,w,0,t)

5 Select WIND from the GRAPH menu and set the window variable values as shown.


tMin=⁻15	xMin=⁻15	yMin=⁻3
tMax=15	xMax=15	yMax=3
tStep=0.5	xScl=1	yScl=1

- 6 Select **FORMT** from the GRAPH menu and set **SimulG** format.
- Select **GRAPH** from the GRAPH menu to plot the parametric equations on the graph screen.

In the equation editor, modify yt1 to compute the first 16 terms of the power series by changing 10 to 16. Plot the equations again.

In this example, the window variable **tStep** controls the plotting speed. Select **WIND** from the GRAPH menu and set **tStep=1** and observe the difference in plotting speed and curve smoothness.

If necessary, select ALLfrom the equation editor menu to deselect all functions. Also, turn off all stat plots.

This example is set up in Param mode, which allows you to control the solution with tStep and increase plotting speed.

To clear the menus from the graph screen, press [CLEAR].

Reservoir Problem

On the TI-86, you can use parametric graphing animation to solve a problem.

Consider a water reservoir with a height of 2 meters. You must install a small valve on the side of the reservoir such that water spraying from the open valve hits the ground as far away from the reservoir as possible. At what height should you install the valve to maximize the length of the water stream when the valve is wide open?

Assume a full tank at time=0, no acceleration in the x direction, and no initial velocity in the y direction. Also, ignore valve-size and valve-type factors. Integrating the definition of acceleration in both the x and y directions twice yields the equations $x=v_0t$ and $y=h_0-(gt^2)/2$. Solving Bernoulli's equation for v_0 and substituting into v_0t results in this pair of parametric equations:

 $xt=t\sqrt{(2g(2-h_0))}$ $yt=h_0-(gt^2)/2$

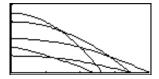
 $\begin{array}{l} t = time \ in \ seconds \\ h_0 = height \ of \ the \ valve \ in \ meters \\ g = the \ built-in \ acceleration \ of \ gravity \ constant \end{array}$

When you graph these equations on the TI-86, the y-axis (x=0) is the side of the reservoir where the valve is to be installed. The x-axis (y=0) is the ground. Each plotted parametric equation represents the water stream when the valve is at each of several heights.

If necessary, select ALLfrom the equation editor menu to deselect all functions. Also, turn off all stat plots. ● In **Param** graphing mode, select **E(t)=** from the GRAPH menu and enter the equations in the equation editor as shown. This pair of equations plots the path of the water stream when the valve is installed at a height of 0.5 meters.

`xt1=t√(2g(2−0.5))

yt1=0.5-(g*t²)/2


yMin=0 yMax=2 vScl=0.5

- Move the cursor to xt2=. Press [2nd] [RCL] [F2] [ALPHA] 1, and press [ENTER] to recall the contents of xt1 into xt2. For xt2, change the valve height (which is 0.5) to 0.75 meters. Do the same with yt1 and yt2.
- Repeat step 3 to create three more pairs of equations. Change the valve height to 1.0 meters for xt3 and yt3, 1.5 meters for xt4 and yt4, and 1.75 meters for xt5 and yt5.
- **4** Select **WIND** from the GRAPH menu and set the window variable values as shown.

tMin=0	xMin=0	
tMax=√(4∕g)	xMax=2	
tStep=0.01	xScl=0.5	

- Select **FORMT** from the GRAPH menu and set **SimulG** graph format.
- 6 Select **GRAPH** from the GRAPH menu to plot the trajectory of the water jets from the five specified heights.

Which height seems to create the longest water stream?

To clear the menus from the graph screen, press [CLEAR].

Predator-Prey Model

The growth rates of predator and prey populations, such as foxes and rabbits, depend upon the populations of both species. This initial-value problem is a form of the predator-prey model.

F'=-F+0.1F*R R'=3R-F*R

Q1 = population of foxes (F) **Q2** = population of rabbits (R) **Q11** = initial population of foxes (2)

QI2 = initial population of rabbits (5)

Find the population of foxes and rabbits after 3 months (t=3).

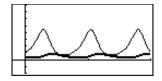
• In **DifEq** graphing mode, select **Q't=** from the GRAPH menu and enter the functions and set graph styles in the equation editor as shown.

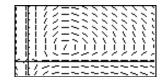
[™]Q'1=-Q1+0.1Q1*Q2 \Q'2=3Q2-Q1*Q2

- 2 Select **FORMT** from the **GRAPH** menu and set **FIdOff** field format.
- 3 Select **WIND** from the GRAPH menu and set the window variable values as shown.

tMin=0	xMin=⁻1	yMin=⁻10
tMax=10	xMax=10	yMax=40
tStep=π/24	xScI=5	yScl=5
tPlot=0		difTol=.001

4 Select **INITC** from the GRAPH menu and set the initial conditions as shown.

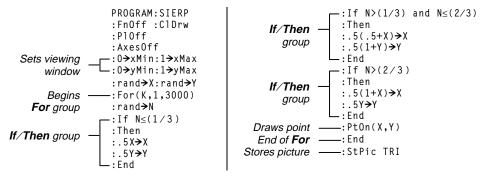

tMin=0 QI1=2 QI2=5


- Select GRAPH from the GRAPH menu to plot the graph of the two populations over time.
- To see the direction field of the phase-plane solution, select
 FORMT from the GRAPH screen, and then set DirFld field format.
- Select INITC from the GRAPH menu and delete the values for QI1 and QI2.
- Select GRAPH from the GRAPH menu to display the direction field of the phase-plane solution.
- To see a family of specific phase-plane solutions on top of the direction field, select INITC from the GRAPH menu, and then enter lists for QI1 and QI2 as shown.

QI1={2,6,7} QI2={6,12,18}

- Select **TRACE** from the GRAPH menu to display the graph with the trace cursor.
- Press 3 to see how many foxes and how many rabbits are alive at t=3. (Round the values of Q1 (foxes) and Q2 (rabbits) to whole numbers.) How many foxes and rabbits are alive at t=6? at t=12?

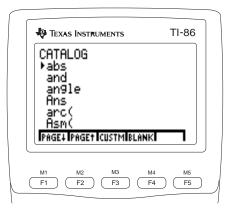
On what value of **Q1** and **Q2** do the phase-plane orbits seem to converge? What is the significance of this value?



Program: Sierpinski Triangle

This program creates a drawing of a widely known fractal, the Sierpinski Triangle, and stores the drawing to the picture variable **TRI**.

Select **EDIT** from the PRGM menu, enter **SIERP** at the **Name=** prompt, and then enter this program.



- 2 On the home screen, select **SIERP** from the PRGM NAMES menu and press **ENTER** to run the program, which may run for several minutes before completion.
- 3 After you run the program, you can recall and display the picture by executing **RcPic TRI**.

20 A to Z Function and Instruction Reference

Quick-Find Locator	. 262
Alphabetical Listing of Operations	. 266

Quick-Find Locator

This section lists the TI-86 functions and instructions in functional groups along with the page numbers where they are described in this chapter.

Graphing

Axes(271
AxesOff	271
AxesOn	271
Circl(273
CIDrw	
CoordOff	
CoordOn	275
DifEq	281
DirFld	
DrawDot	285
DrawF	
DrawLine	
DrEqu(287

DrInv	
dxDer1	
dxNDer	
FldOff	295
FnOff	296
FnOn	297
Func	
GridOff	301
GridOn	302
GrStl(302
Horiz	304
LabelOff	310
LabelOn	310

	9
Line(314
Param	
Pol	
PolarGC	336
PtChg(
PtOff(338
PtOn(338
PxChg(340
PxOff(340
PxOn(
PxTest(340
RcGDB	343
RcPic	343

RectGC 344	
SeqG 351	
Shade(
SimulG 354	
SlpFld	
StGDB	
StPic	
TanLn(
Text(
Trace	
Vert	
ZData	
ZDecm	

ZFit	373
ZIn	373
ZInt	
ZOut	375
ZPrev	375
ZRcl	376
ZSqr	376
ZStd	
ZTrig	378

Lists

aug(270	→dimL 282
cSum(278	Fill(295
Deltalst(279	Form(298
dimL	List entry: { }316

li▶vc	316
prod	338
Select(
seq(

SetLEdit	1
sortA 35	9
sortD 35	9
Sortx	9

Sorty	359
sum	
vc ⊧li	

Mathematics, Algebra, and Calculus

abs	267
Addition: +	267
and	268
angle	
Ans	269
arc(
Assignment: =	270
b	271
Bin	272
▶Bin	272
CIrEnt	273
CITbl	273
conj	275
cos	
cos⁻¹	276
cosh	277
cosh ⁻¹	
d	
Dec	
Dec	279
Degree	279
Degree entry: °	279
der1(280
der2(280

Division: /	284
DMS entry: '	
►DMS	
dxDer1	
dxNDer	
•	
Eng	290
Eq▶St(290
Equal: =	290
Equal to: ==	
Euler	
eval	
evalF(
Exponent: E	
Factorial: !	
Fix	295
Float	
fMax(
fMin(
fnInt(
fPart	
▶Frac	
gcd(
Greater than: >	

Greater than or	
equal to: ≥	301
h	302
Hex	302
▶Hex	
imag	306
int	308
inter(Inverse: ⁻¹	309
Inverse: ⁻¹	309
iPart	309
lcm(311
Less than: <	312
Less than or	
equal to: ≤	312
In	316
log	318
max(319
min(320
mod(320
Multiplication: * .	321
nCr	
nDer(323
Negation:	323

not 3	25
Not equal to: $\neq \dots 3$	26
nPr	
0	
_	$\frac{20}{27}$
••••	$\frac{27}{27}$
▶Oct 3	21
or	28
Percent: %	34
pEval(3	34
•Pol	
PolarC 3	
Polar complex: $\angle .3$	36
	37
Power: ^	37
Power of 10: 10 [^] . 3	37
Radian3	41
Radian entry: r 3	41
real 3	
▶ Rec	43
RectC 3	44
RK	45
Root: $\sqrt[x]{}$	46
rotL	
rotR	47

round(. 348
Sci	
shftL	
shftR	
sign	
simult(
sin	. 399
sin ⁻¹	. 355
sinh	
sinh ⁻¹	. 356
Solver(. 358
Solver(Square: ²	. 360
Square root: √	. 360
St>Eq(
Store to	
variable: →	. 362
Subtraction:	
tan	
tan ⁻¹	365
tani	. 000
tanh	. 305
tanh ⁻¹	. 365
xor	.370

пл	21	100	~	00
	а.		•	C3

aug(270	→dim 281
cnorm	eiaVc
cond274	eigVI
det281	Fill(
$\dim \dots \dots 281$	ident 304

LU(18
Matrix entry: [] 3	
mRAdd(21
multR(3	22
norm3	23

Programming

299

300

300

304

304

 $\begin{array}{c} 305\\ 307 \end{array}$

rAdd(
randM(
ref	
rnorm	
rref	

rSwap(
Transpose: T	367

Asm(Disp DS< Else End
DelVar(Equa Equa For(

DispT	284
DS<(288
Else	290
End	290
Equal: =	290
Equal to: ==	291
For(297

284	Get(
288	getKy
290	Goto
290	IAsk
290	IAuto
291	If
297	InpSt

Input	307
IS>(310
Lbl	
LCust(311
Menu(
Outpt(
Pause	

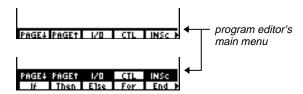
Statistics

Box	LnR
ExpR	MBox 319
fcstx294	OneVar 327
fcsty294	P2Reg330
Hist	P3Reg
LgstR	P4Reg
LinR	PIOff

PIOn	334
Plot1(335
Plot2(335
Plot3(335
PwrR	339
rand	341
randBin(341

randInt(342
randM(342
randNorm(342
Scatter	349
Select(350
SetLEdit	351
ShwSt	354

SinR	357
Sortx	359
Sorty	359
StReg(362
TwoVar	368
xyline	370


		Strings		
Concatenation: + 274 Eq⊧St(Ingth 316	St≯Eq(361	String entry: "363	sub(363
		Vectors		
cnorm	dim281	li≽vc 316	▶Sph 360	Vector entry: [] 369
cross(277	→dim	norm 323	SphereV	
▶Cyl278	dot(285	RectV 344	unitV	
CyIV	Fill(295	rnorm 346	v c ≽li369	

Alphabetical Listing of Operations

All the operations in this section are included in the CATALOG. Non-alphabetic operations (such as +, !, and >) are listed at the end of the CATALOG. In this A to Z Reference, however, these operations are listed under their alphabetic equivalent (such as addition, factorial, and greater than).

You always can use the CATALOG to select an operation and paste it to the home screen or to a command line in the program editor. You also can use the specific keystrokes, menus, or screens listed in this section.

- [†] Indicates menus or screens that paste the operation's name only if you are in the program editor. In most cases, you can use these menus or screens from the home screen to perform the operation interactively, without pasting the name.
- ‡ Indicates menus or screens that are valid only from the program editor's main menu. From the home screen, you cannot use these menus or screens to select an operation.

The syntax for some operations uses brackets [] to indicate optional arguments. If you use an optional argument, do not enter the brackets.

			-
abs	abs realNumber or abs (realExpression)	abs -256.4 [ENTER] 256.4	ŧ
MATH NUM menu CPLX menu	Returns the absolute value of <i>realNumber</i> or <i>realExpression</i> .	abs -4*3+13 [ENTER] 25 abs (-4*3+13) [ENTER] 1	; [
MATRX CPLX menu	abs (complexNumber)	abs (3,4) ENTER 5	
VECTR CPLX menu	Returns the magnitude (modulus) of <i>complexNumber</i> .	abs $(3 \angle 4)$ ENTER 3	3
	abs (real, imaginary) returns $\sqrt{(real^2+imaginary^2)}$. abs (magnitude \angle angle) returns magnitude.		
	abs list abs matrix abs vector	abs {1.25,-5.67} ENTER {1.25 5.67}	ł
	Returns a list, matrix, or vector in which each element is the absolute value of the corresponding real or complex element in the argument.	abs [(3,4),(3∠4)] <u>[ENTER]</u> [5 3]	I
Addition: +	numberA+numberB	In RectC complex number mode:	-
+	Returns the sum of two real or complex numbers.	(2,5)+(5,9) ENTER (7,14)	
	number+list	4+{1,2,3} [ENTER] {5 6 7}	
	Returns a list in which a real or complex <i>number</i> is added to each element of a real or complex <i>list</i> .	3+{1,7,(2,1)} [ENTER] {(4,0) (10,0) (5,1)}	

	 listA + listB matrixA + matrixB vectorA + vectorB Returns a list, matrix, or vector that is the sum of the corresponding real or complex elements in the arguments. The two arguments must have the same dimension. For information about adding two strings, refer to Concatenation on page 274. 		{5 7 9} 7,8,9]] 7 9] 13 15]] [5 7 9]
and	integerA and integerB	In Dec number base mode:	
BASE BOOL menu	Compares two real integers bit by bit. Internally, both integers are converted to binary. When corresponding bits are compared, the result is 1 if both bits are 1; otherwise, the result is 0. The returned value is the sum of the bit results. For example, 78 and $23 = 6$. 78 = 1001110b <u>23 = 0010111b</u> 0000110b = 6	78 and 23 <u>ENTER</u> In Bin number base mode: 1001110 and 10111 <u>ENTER</u> Ans → Dec <u>ENTER</u>	6 110b 6d
	You can enter real numbers instead of integers, but they are truncated automatically before the comparison.		

angle	angle (complexNumber)	In Radian angle mode and PolarC complex
CPLX menu MATRX CPLX menu VECTR CPLX menu	Returns the polar angle of <i>complexNumber</i> , adjusted by $+\pi$ in the 2nd quadrant or $-\pi$ in the 3rd quadrant. The polar angle of a real number is always 0.	number mode: angle (3,4) [ENTER] .927295218002 angle (3∠2) [ENTER] 2
	angle (real,imaginary) returns tan⁻¹(imaginary/real). angle (magnitude∠angle) returns angle, -π < angle ≤ π.	(6∠π/3)→A ENTER (6∠1.0471975512) angle A ENTER 1.0471975512
	angle <i>complexList</i> angle <i>complexMatrix</i> angle <i>complexVector</i>	angle {(3,4),(3∠2)} <u>ENTER</u> {.927295218002 2}
	Returns a list, matrix, or vector in which each element is the polar angle of the corresponding element in the argument.	
	If <i>complexVector</i> has only two real elements, the returned value is a real number, not a vector.	
Ans 2nd [ANS]	Ans Returns the last answer.	1.7*4.2 ENTER 7.14 147/Ans ENTER 20.5882352941
arc(arc (expression, variable, start, end)	arc(x ² ,x,0,1) [ENTER]
CALC menu	Returns the length along <i>expression</i> with respect to $variable$, from $variable = start$ to $variable = end$.	1.47894285752 arc(cos x,x,0,π) <u>ENTER</u> 3.82019778904
Asm(Asm(assemblyProgramName)	
CATALOG	Executes an assembly language program. For more information, refer to Chapter 16.	

AsmComp(AsmComp(AsciiAssemblyPrgmName,HexAssemblyPrgmName)	
CATALOG	Compiles an assembly language program written in ASCII and stores the hex version. The compiled hex version, which uses about half the storage space of the ASCII version, cannot be edited.	
	When you execute the ASCII version, the TI-86 compiles it each time. To speed up execution, use AsmComp(to compile the ASCII version once and then execute the hex version each time you want to run the program.	
AsmPrgm	AsmPrgm	
CATALOG	Must be used as the first line of an assembly language program.	
Assignment: =	equationVariable = expression	y1=2 x ² +6 x-5 ENTER Done
(<u>ALPHA</u>) [=]	Stores <i>expression</i> to <i>equationVariable</i> , without evaluating <i>expression</i> . (If you use \underline{STOP} to store an expression to a variable, the expression is evaluated and then the result is stored.)	The built-in equation variables used for graphing are case-sensitive. Use y1 , not Y1 .
aug(aug(listA,listB)	aug({1,-3,2},{5,4}) ENTER
LIST OPS menu	Returns a list consisting of <i>listB</i> appended	{1 -3 2 5 4}
MATRX OPS menu	(concatenated) to the end of <i>listA</i> . The lists can be real or complex.	

	aug(matrixA,matrixB)	[[1,2,3][4,5,6]]→MATA ENTER
	Returns a matrix consisting of <i>matrixB</i> appended as new columns to the end of <i>matrixA</i> . The matrices can be real or complex. Both must have the same number of rows.	[[1 2 3] [4 5 6]] [[7,8][9,10]]→MATB ENTER [[7 8] [9 10]]
	aug(matrix,vector)	aug(MATA,MATB) <u>ENTER</u> [[1 2 3 7 8]
	Returns a matrix consisting of <i>vector</i> appended as a new column to the end of <i>matrix</i> . The arguments can be real or complex. The number of rows in <i>matrix</i> must equal the number of elements in <i>vector</i> .	[4 5 6 9 10]]
Axes(Axes(xAxisVariable,yAxisVariable)	Axes(Q1,Q2) ENTER Done
† GRAPH VARS menu	Specifies the variables plotted for the axes in DifEq graphing mode. The <i>xAxisVariable</i> or <i>yAxisVariable</i> can be t , Q1 through Q9 , or Q'1 through Q'9 .	
AxesOff	AxesOff	
† graph format screen	Turns off the graph axes.	
AxesOn	AxesOn	
† graph format screen	Turns on the graph axes.	
b	integerb	In Dec number base mode:
BASE TYPE menu	Designates a real <i>integer</i> as binary, regardless of the number base mode setting.	10b ENTER 2 10b+10 ENTER 12

Bin † mode screen	Bin Sets binary number base mode. Results are displayed with the b suffix. In any number base mode, you can designate an appropriate value as binary, decimal, hexadecimal, or octal by using the b, d, h, or o designator, respectively, from the BASE TYPE menu.	In Bin number base mode: 10+Fh+10o+10d [ENTER] 100011b
▶Bin BASE CONV menu	number >Bin list >Bin matrix >Bin vector >Bin Returns the binary equivalent of the real or complex argument.	In Dec number base mode: 2*8 [ENTER] 16 Ans▶Bin [ENTER] 10000b {1,2,3,4}▶Bin [ENTER] {1b 10b 11b 100b}
Box † STAT DRAW menu	 Box <i>xList_frequencyList</i> Draws a box plot on the current graph, using the real data in <i>xList</i> and the frequencies in <i>frequencyList</i>. Box <i>xList</i> Uses frequencies of 1. Box Uses the data in built-in variables xStat and fStat. These variables must contain valid data of the same dimension; otherwise, an error occurs. 	Starting with a ZStd graph screen: {1,2,3,4,5,9}→XL [ENTER {1 2 3 4 5 9} {1,1,1,4,1,1}→FL [ENTER] {1 1 1 4 1 1} 0→xMin:0→yMin [ENTER] 0 Box XL,FL [ENTER]

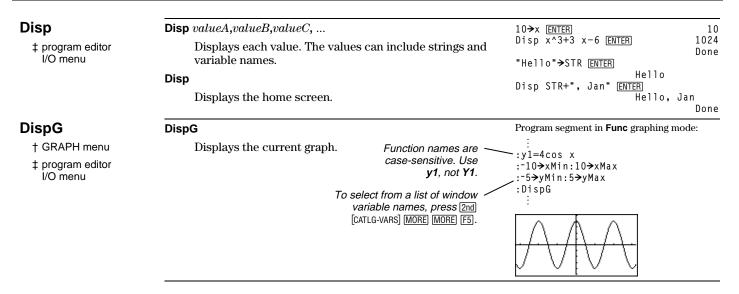
Circl(Circl(<i>x</i> , <i>y</i> , <i>radius</i>)	Starting with a ZStd graph screen:
† GRAPH DRAW menu	Draws a circle with center (x,y) and <i>radius</i> on the current graph.	ZSqr:Circl(1,2,7) ENTER
CIDrw	CIDrw	
† GRAPH DRAW menu † STAT DRAW menu	Clears all drawn elements from the current graph.	
CILCD	CILCD	
<pre>‡ program editor I/O menu</pre>	Clears the home screen (LCD).	
CIrEnt	CirEnt	
MEM menu	Clears the contents of the Last Entry storage area.	
CITbl	СІТЫ	
‡ program editor I/O menu	Clears all values from the current table if Indpnt: Ask (IAsk , page 304) is set.	
cnorm	cnorm matrix	[[1,-2,3][4,5,-6]]→MAT ENTER
MATRX MATH menu	Returns the column norm of a real or complex <i>matrix</i> . For each column, cnorm sums the absolute values (magnitudes of complex elements) of the elements in that column and returns the largest of those column sums.	[[1 -2 3] [4 5 -6]] cnorm MAT <u>ENTER</u> 9

	cnorm <i>vector</i> Returns the sum of the absolute values of the real or complex elements in <i>vector</i> .	[-1,2,-3]→VEC [ENTER] [-1 2 -3] cnorm VEC [ENTER] 6
Concatenation: +	stringA+stringB	"your name:"→STR ENTER
+	Returns a string consisting of $stringB$ appended (concatenated) to the end of $stringA$.	your name: "Enter "+STR <u>ENTER</u> Enter your name:
cond	cond squareMatrix	[[1,0,0][0,1,0][0,0,1]]→MAT1
MATRX MATH menu	Returns the condition number of a real or complex <i>squareMatrix</i> , which is calculated as:	[ENTER] [[1 0 0] [0 1 0] [0 0 1]]
	cnorm $squareMatrix$ * cnorm $squareMatrix^{-1}$	cond MAT1 [ENTER] 1
	The condition number indicates how well-behaved	log (Ans) ENTER 0
	<i>squareMatrix</i> is expected to be for certain matrix functions, particularly inverse. For a well-behaved matrix, the condition number is close to 1.	[[1,2,3][4,5,6][7,8,9]] → MAT2 ENTER [[1 2 3] [4 5 6]
	log(cond <i>squareMatrix</i>) indicates the number of digits that may be lost due to round-off errors in computing the inverse.	[7 8 9]] cond MAT2 <u>ENTER</u> 1.8E14 log (Ans) <u>ENTER</u> 14.2552725051
	For a matrix with no inverse, cond returns an error.	

CONJ CPLX menu	conj (<i>complexNumber</i>) Returns the complex conjugate of <i>complexNumber</i> .	In RectC complex number mode: conj $(3,4)$ [ENTER] $(3,-4)$ conj $(3\angle 2)$ [ENTER]
MATRX CPLX menu VECTR CPLX menu	In RectC mode, conj (<i>real,imaginary</i>) returns (<i>real,-imaginary</i>).	(-1.24844050964,-2.7 In PolarC complex number mode:
	In PolarC mode, conj (magnitude \angle angle) returns (magnitude \angle -angle), $\neg \pi < angle \le \pi$.	conj $(3 \angle 2)$ ENTER $(3 \angle -2)$
	conj complexList conj complexMatrix conj complexVector	conj (3,4) <u>ENTER</u> (5∠–.927295218002) conj {√–2,(3,4)} <u>ENTER</u> {(1.41421356237∠–1.5…
	Returns a complex list, matrix, or vector in which each element is the complex conjugate of the original.	
CoordOff	CoordOff	
† graph format screen	Turns off cursor coordinates so they are not displayed at the bottom of a graph.	
CoordOn	CoordOn	
† graph format screen	Displays cursor coordinates at the bottom of a graph.	

COS	cos angle or cos (expression)	In Radian angle mode:
COS	Returns the cosine of <i>angle</i> or <i>expression</i> , which can be real or complex.	$\cos \pi/2$ ENTER 5 $\cos (\pi/2)$ ENTER 0 $\cos 45^{\circ}$ ENTER .707106781187
	An angle is interpreted as degrees or radians according to the current angle mode. In any angle mode, you can designate an angle as degrees or radians by using the ° or ' designator, respectively, from the MATH ANGLE menu.	In Degree angle mode: $\cos 45 \text{ [ENTER]}$.707106781187 $\cos (\pi/2)^r \text{ [ENTER]}$ 0
	cos list	In Radian angle mode:
	Returns a list in which each element is the cosine of the	$\cos \{0, \pi/2, \pi\}$ ENTER $\{1 \ 0 \ -1\}$
	corresponding element in <i>list</i> .	In Degree angle mode:
	cos squareMatrix	cos {0,60,90} ENTER {1 .5 0}
The squareMatrix cannot have repeated eigenvalues.	Returns a square matrix that is the matrix cosine of <i>squareMatrix</i> . The matrix cosine corresponds to the result calculated using power series or Cayley-Hamilton Theorem techniques. This is <i>not</i> the same as simply calculating the cosine of each element.	
COS⁻1	cos ⁻¹ number or cos ⁻¹ (expression)	In Radian angle mode:
[2nd] [COS-1]	Returns the arccosine of <i>number</i> or <i>expression</i> , which can be real or complex.	cos ⁻¹ .5 ENTER 1.0471975512
		In Degree angle mode:
		cos ⁻¹ 1 ENTER 0
	cos ⁻¹ list	In Radian angle mode:
	Returns a list in which each element is the arccosine of the corresponding element in <i>list</i> .	cos ⁻¹ {0,.5} <u>ENTER</u> {1.57079632679,1.047

cosh	cosh number or cosh (expression)	cosh 1.2 [ENTER] 1.81065556732
MATH HYP menu	Returns the hyperbolic cosine of <i>number</i> or <i>expression</i> , which can be real or complex.	
	cosh list	cosh {0,1.2} [ENTER]
	Returns a list in which each element is the hyperbolic cosine of the corresponding element in <i>list</i> .	{1 1.81065556732}
cosh⁻¹	cosh ⁻¹ number or cos ⁻¹ (expression)	cosh ⁻¹ 1 [ENTER] 0
MATH HYP menu	Returns the inverse hyperbolic cosine of <i>number</i> or <i>expression</i> , which can be real or complex.	
	cosh ⁻¹ list	cosh ⁻¹ {1,2.1,3} [ENTER]
	Returns a list in which each element is the inverse hyperbolic cosine of the corresponding element in <i>list</i> .	{0 1.37285914424 1.7
cross(cross(vectorA,vectorB)	cross([1,2,3],[4,5,6]) [ENTER]
VECTR MATH menu	Returns the cross product of two real or complex	[-3 6 -3]
	vectors, where:	cross([1,2],[3,4]) ENTER [0 0 -2]
	cross([a,b,c],[d,e,f]) = [bf-ce cd-af ae-bd]	
	Both vectors must have the same dimension (either 2 or 3 elements). A 2-D vector is treated as a 3-D vector with 0 as the third element.	


cSum(cSum(<i>list</i>)	cSum({1,2,3,4}) ENTER {1 3 6 10}	
LIST OPS menu	Returns a list of the cumulative sums of the real or complex elements in <i>list</i> , starting with the first element.	{10,20,30}→L1 [ENTER] {10 20 30} cSum(L1) [ENTER] {10 30 60}	
⊧Cyl	vector ኑCy l	[-2,0]▶Cy1 [ENTER]	
VECTR OPS menu	Displays a 2- or 3-element real <i>vector</i> result in cylindrical form, $[r \angle \theta z]$, even if the display mode is not set for cylindrical (CylV).	[2∠3.14159265359 0] [-2,0,1]▶Cy1 [ENTER] [2∠3.14159265359 1]	
CylV	CyIV	In CyIV vector coordinate mode and Radian angle mode:	
† mode screen	Sets cylindrical vector coordinate mode ($[r \angle \theta z]$).	[3,4,5] [ENTER] [5∠.927295218002 5]	
d	number d In Bin number base mode:		
BASE TYPE menu	Designates a real <i>number</i> as decimal, regardless of the number base mode setting.	10d ENTER 1010b 10d+10 ENTER 1100b	
Dec	Dec	In Dec number base mode:	
† mode screen	Sets decimal number base mode. In any number base mode, you can designate an appropriate value as binary, decimal, hexadecimal, or octal by using the b, d, h, or o designator, respectively, from the BASE TYPE menu.	10+10b+Fh+10o ENTER 35	

▶Dec BASE CONV menu	number>Dec list>Dec matrix>Dec vector>Dec Returns the decimal equivalent of the real or complex argument.	In Hex number base mode: 2*F ENTER 1Eh Ans>Dec ENTER 30d {A,B,C,D,E}>Dec ENTER {10d 11d 12d 13d 14d}	
Degree	Degree	In Degree angle mode:	
† mode screen	Sets degree angle mode.	$\sin 90 = 1$ $\sin (\pi/2) = 0.027412133592$	
Degree entry: °	number° or (expression)°	In Radian angle mode:	
MATH ANGLE menu	Designates a real <i>number</i> or <i>expression</i> as degrees, regardless of the angle mode setting.	cos 90 <u>ENTER</u> 448073616129 cos 90° <u>ENTER</u> 0	
	list °	cos {45,90,180}° [ENTER]	
	Designates each element in <i>list</i> as degrees.	{.707106781187 0 -1}	
Deltalst(Deltalst(<i>list</i>)	Deltalst({20,30,45,70}) [ENTER]	
LIST OPS menu (Deltal shows on menu)	Returns a list containing the differences between consecutive real or complex elements in <i>list</i> . This subtracts the first element in <i>list</i> from the second element, the second from the third, and so on. The resulting list is always one element shorter than <i>list</i> .	{10 15 25}	

DelVar(DelVar(variable)	2→A ENTER	2
‡ program editor CTL menu	Deletes the specified user-created <i>variable</i> from memory.	(A+2) ² ENTER DelVar(A) ENTER (A+2) ² ENTER ERROR 14	16 Done UNDEFINED
(DelVa shows on menu)	You cannot use DelVar(to delete a program variable or built-in variable.		
der1(der1(expression,variable,value)	der1(x^3,x,5) ENTER	75
CALC menu	Returns the first derivative of <i>expression</i> with respect to <i>variable</i> at the real or complex <i>value</i> .		
	der1(expression,variable)	3→x ENTER	3
	Uses the current value of <i>variable</i> .	der1(x^3,x) ENTER	27
	der1(expression,variable,list)	der1(x^3,x,{5,3}) ENTER	{75 27}
	Returns a list containing the first derivatives at the values specified by the elements in <i>list</i> .		
der2(der2(expression,variable,value)	der2(x^3,x,5) ENTER	30
CALC menu	Returns the second derivative of <i>expression</i> with respect to <i>variable</i> at the real or complex <i>value</i> .		
	der2(expression,variable)	3→x ENTER	3
	Uses the current value of <i>variable</i> .	der2(x^3,x) ENTER	18
	der2(expression,variable,list)	der2(x^3,x,{5,3}) ENTER	{30 18}
	Returns a list containing the second derivatives at the values specified by the elements in <i>list</i> .		

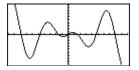
det	det squareMatrix	[[1,2][3,4]]→MAT [ENTER] [[1 2]
MATRX MATH menu	Returns the determinant of <i>squareMatrix</i> . The result is real for a real matrix, complex for a complex matrix.	[3 4]] det MAT [ENTER] -2
DifEq	DifEq	
† mode screen	Sets differential equation graphing mode.	
dim	dim matrix	[[2,7,1][-8,0,1]]→MAT [ENTER]
MATRX OPS menu	Returns a list containing the dimensions (number of	[[2 7 1] [-8 0 1]]
VECTR OPS menu	rows and columns) of a real or complex matrix.	dim MAT ENTER {2 3}
	dim vector	dim [-8,0,1] [ENTER] 3
	Returns the length (number of elements) of a real or complex <i>vector</i> .	
→dim	{rows,columns}→dim matrixName	[[2,7][-8,0]]→MAT [ENTER]
STO►, then MATRX OPS menu	If <i>matrixName</i> does not exist, creates a new matrix with the specified dimensions and fills it with zeros.	[[2 7] [-8 0]]
STO►, then VECTR OPS	If <i>matrixName</i> exists, redimensions that matrix to the	{3,3}→dim MAT ENTER {3 3}
menu	specified dimensions. Existing elements within the new dimensions are not changed; elements outside the new dimensions are deleted. If additional elements are created, they are filled with zeros.	MAT ENTER [[2 7 0] [-8 0 0] [0 0 0]]

	 #ofElements→dim vectorName If vectorName does not exist, creates a new vector with the specified #ofElements and fills it with zeros. If vectorName exists, redimensions that vector to the specified #ofElements. Existing elements within the new dimension are not changed; elements outside the new dimension are deleted. If additional elements are created, they are filled with zeros. 	DelVar(VEC) ENTERDone $4 \rightarrow dim$ VEC ENTER4VEC ENTER[0 0 0 0] $[1,2,3,4] \rightarrow VEC$ ENTER[1 2 3 4] $2 \rightarrow dim$ VEC ENTER2VEC ENTER[1 2] $3 \rightarrow dim$ VEC ENTER3VEC ENTER[1 2 0]
dimL	dimL list	dimL {2,7,-8,0} ENTER 4
LIST OPS menu	Returns the length (number of elements) of a real or complex <i>list</i> .	1/dimL {2,7,-8,0} ENTER .25
→dimL	#ofElements→dimL listName	3→dimL NEWLIST ENTER 3
STO►, then LIST OPS menu	If <i>listName</i> does not exist, creates a new list with the specified <i>#ofElements</i> and fills it with zeros.	NEWLIST ENTER $\{0 \ 0 \ 0\}$ $\{2,7,-8,1\} \rightarrow L1$ ENTER $\{2 \ 7 \ -8 \ 1\}$
	If <i>listName</i> exists, redimensions that list to the specified <i>#ofElements</i> . Existing elements within the new dimension are not changed; elements outside the new dimension are deleted. If additional elements are created, they are filled with zeros.	5→dimL L1 [ENTER] 5 L1 [ENTER] {2 7 -8 1 0} 2→dimL L1 [ENTER] 2 L1 [ENTER] {2 7}
DirFld	DirFld	
† graph format screen (scroll down to second screen)	In DifEq graphing mode, turns on direction fields. To turn off direction and slope fields, use FldOff .	

DispT	DispT	Program segment in Func graphing mode:
‡ program editor I/O menu	Displays the table. Function names are case-sensitive. Use y1, not Y1.	:y1=4cos x :DispT : : : : : : : : : : : : : : : : : : :
Division: /	numberAInumberB or (expressionA)/(expressionB)	-98/4 [ENTER] -24.5
÷	Returns one argument divided by another. The arguments can be real or complex.	-98/(4 * 3) <u>ENTER</u> -8.16666666667
	number/list or (expression)/list	100/{10,25,2} [ENTER] {10 4 50}
	Returns a list in which each element is <i>number</i> or <i>expression</i> divided by the corresponding element in <i>list</i> .	
	list/number or list/(expression)	{120,92,8}/4 ENTER {30 23 2}
	vector/number or vector/(expression)	In RectC complex number mode:
	Returns a list or vector in which each element of <i>list</i> or <i>vector</i> is divided by <i>number</i> or <i>expression</i> .	[8,1,(5,2)]/2 ENTER [(4,0) (.5,0) (2.5,1
	listA1listB	{1,2,3}/{4,5,6} ENTER
	Returns a list in which each element of <i>listA</i> is divided by the corresponding element of <i>listB</i> . The lists must have the same dimension.	{.25 .4 .5}

284 Chapter 20: A to Z Function and Instruction Reference

DMS entry:	degrees'minutes'seconds'	54'32'30' ENTER 54.5416666667
MATH ANGLE menu	Designates the entered angle is in DMS format. <i>degrees</i> $(\leq 999,999)$, <i>minutes</i> (< 60) , and <i>seconds</i> $(< 60, may)$	In Degree angle mode: cos 54'32'30' <u>ENTER</u> .580110760699
In a trig calculation, the result of a DMS entry is treated as degrees in the	 have decimal places) must be entered as real numbers, not as variable names or expressions. Do not use ° and " symbols to specify <i>degrees</i> and <i>seconds</i>. For example, 5°59' is interpreted as implied multiplication of 5° * 59' according to the current angle 	In Radian angle mode: cos 54'32'30' <u>ENTER</u> 422502666138
Degree angle mode only. It is treated as radians in Radian angle mode.		Do not use the following notation; in Degree angle mode:
	mode setting.	5°59' [ENTER] 295
▶DMS	angle▶DMS	In Degree angle mode:
MATH ANGLE menu	Displays <i>angle</i> in DMS format. The result is shown in	45.371 DMS ENTER 45°22'15.6"
	<i>degrees</i> ° <i>minutes</i> ' <i>seconds</i> " format, even though you use <i>degrees</i> ' <i>minutes</i> ' <i>seconds</i> ' to enter a DMS angle.	54'32'30' * 2 <u>ENTER</u> 109.083333333 Ans▶DMS <u>ENTER</u> 109°5'0"
dot(dot(vectorA,vectorB)	dot([1,2,3],[4,5,6]) ENTER 32
VECTR MATH menu	Returns the dot product of two real or complex vectors.	
	dot([a,b,c],[d,e,f]) returns a*d+b*e+c*f.	
DrawDot	DrawDot	
† graph format screen	Sets dot graphing format.	


DrawF

DrawF expression

GRAPH DRAW menu

Draws *expression* (in terms of \mathbf{x}) on the current graph.

In **Func** graphing mode: ZStd:DrawF 1.25 x cos x <u>ENTER</u>

DrawLine

DrawLine

† graph format screen

Sets connected line graphing format.

DrEqu(DrEqu(xAxisVariable,yAxisVariable,xList,yList,tList)	In DifEq graphing mode, starting with a ZStd
† GRAPH menu To enter the ' character for the Q' variables, use the CHAR MISC menu.	In DifEq graphing mode, draws the solution to a set of differential equations stored in the Q' variables specified by <i>xAxisVariable</i> and <i>yAxisVariable</i> . If direction fields are off (FldOff is selected), the initial values must be stored also.	graph screen: Q'1=Q2:Q'2=-Q1 <u>ENTER</u> Done O→tMin:1→QI1:O→QI2 <u>ENTER</u> 0 DrEqu(Q1,Q2,XL,YL,TL) <u>ENTER</u>
	After the solution is drawn, DrEqu(waits for you to move the cursor to a new initial value and press ENTER to draw the new solution.	21=0
	You then are prompted to press \mathbf{Y} (to specify another initial value) or \mathbf{N} (to stop).	Move the cursor to a new initial value. [ENTER]
	For the last-drawn solution, the x , y , and t values (beginning at their initial values) are stored to <i>xList</i> , <i>yList</i> , and <i>tList</i> , respectively.	
	DrEqu(xAxisVariable,yAxisVariable)	A3gin?
	Does not store $\boldsymbol{x}, \boldsymbol{y},$ and \boldsymbol{t} values for the solution.	Press N to stop graphing. You can then examine XL, YL, and TL.
Drlnv	DrInv expression	In Func graphing mode:
GRAPH DRAW menu	Draws the inverse of <i>expression</i> by plotting \mathbf{x} values on the y-axis and \mathbf{y} values on the x-axis.	ZStd:DrInv 1.25 x cos x ENTER

DS<(‡ program editor CTL menu	<pre>:DS<(variable,value) :command-if-variable≥value :commands Decrements variable by 1. If the result is < value, skips command-if-variable≥value. If the result is ≥ value, then command-if-variable≥value is executed. variable cannot be a built-in variable.</pre>	Program segment: : :9>A :Lbl Start :Disp A :DS<(A,5) :Goto Start :Disp "A is now <5" :
dxDer1	dxDer1	The current differentiation type is used by the
† mode screen	Sets der1 as the current differentiation type. der1 differentiates exactly and calculates the value for each function in an expression. It is more accurate than dxNDer , but more restrictive in that only certain functions are valid in the expression.	arc(and TanLn(functions, as well as interactive graphing operations dy/dx, dr/dθ, dy/dt, dx/dt, ARC, TanLn, and INFLC.
dxNDer	dxNDer	The current differentiation type is used by the
† mode screen	Sets nDer as the current differentiation type. nDer differentiates numerically and calculates the value for an expression. It is less accurate than dxDer1 , but less restrictive in the functions that are valid in the expression.	arc(and TanLn(functions, as well as interactive graphing operations dy/dx, dr/dθ, dy/dt, dx/dt, ARC, TanLn, and INFLC.
e^	e^power or e^(expression)	e^0 ENTER 1
[2nd] [e ^x]	Returns e raised to <i>power</i> or <i>expression</i> . The argument can be real or complex.	

	 e^list Returns a list in which each element is e raised to the power specified by the corresponding element in <i>list</i>. e^squareMatrix 	e^{1,0,.5} [ENTER] {2.71828182846 1 1.6
The squareMatrix cannot have repeated eigenvalues.	Returns a square matrix that is the matrix exponential of <i>squareMatrix</i> . The matrix exponential corresponds to the result calculated using power series or Cayley- Hamilton Theorem techniques. This is <i>not</i> the same as simply calculating the exponential of each element.	
eigVc	eigVc squareMatrix	In RectC complex number mode:
MATRX MATH menu The squareMatrix cannot have repeated eigenvalues.	Returns a matrix containing the eigenvectors for a real or complex <i>squareMatrix</i> , where each column in the result corresponds to an eigenvalue. The eigenvectors of a real matrix may be complex. Note that an eigenvector is not unique; it may be scaled by any constant factor. TI-86 eigenvectors are normalized.	[[-1,2,5][3,-6,9][2,-5,7]]→MAT [ENTER [[-1 2 5] [3 -6 9] [2 -5 7]] eigVc MAT [ENTER [[(.800906446592,0) [(484028886343,0) [(352512270699,0)
eigVI	eigVI squareMatrix	In RectC complex number mode:
MATRX MATH menu	Returns a list of the eigenvalues of a real or complex <i>squareMatrix</i> . The eigenvalues of a real matrix may be complex.	[[-1,2,5][3,-6,9][2,-5,7]]→MAT [ENTER] [[-1 2 5] [3 -6 9] [2 -5 7]] eigVl MAT [ENTER] {(-4.40941084667,0)

Else

‡ program editor CTL menu

End

‡ program editor CTL menu

Eng

† mode screen

Eq►St(

STRNG menu

Equal: =

Refer to syntax information for **lf**, beginning on page 305. See the **lf:Then:Else:End** syntax.

End

Identifies the end of a While, For, Repeat, or If-Then-Else loop.

screen	Eng Sets engineering notation mode, in which the power-of-	In Eng notation mode: 123456789 [ENTER]	123.456789E6
	10 exponent is a multiple of 3.	In Normal notation mode: 123456789 [ENTER]	123456789
	Eq>St(equationVariable,stringVariable)	A=B*C ENTER	Done
menu	Converts the contents of <i>equationVariable</i> to a string and stores it to <i>stringVariable</i> . Be sure to specify an equation variable, not an equation.	5⇒B ENTER 2⇒C ENTER A ENTER Eq⊳St(A,STR) ENTER	5 2 10 Done
	To create an equation variable, use an equal sign (=) to define the variable. For example, enter A=B*C , not B*C→A .	STR <u>ENTER</u>	B*C
	Refer to syntax information for Assignment on page 270.	Example of = treated as -(,	where 4=6+1 is
:]	If you use = in an expression in which the first argument is not a variable name at the beginning of a line, the = is	evaluated as $4-(6+1)$: 4=6+1 [ENTER]	-3
	treated as -(.	For true/false comparison, use == instead:	
		4==6+1 [ENTER]	0

Equal to: == TEST menu	numberA == numberB matrixA == matrixB	2+2==2+2 [ENTER]	1
TEST menu	vectorA = vectorB	2+(2==2)+2 ENTER	5
The == operator is used to	stringA == stringB	[1,2]==[3-2,-1+3] [ENTER]	1
or expression to a variable.	Tests whether the condition $argumentA == argumentB$ is true or false. Numbers, matrices, and vectors can be real or complex. If complex, the magnitude (modulus) of each element is compared. Strings are case-sensitive.	"A"=="a" [ENTER]	0
	• If true (<i>argumentA</i> = <i>argumentB</i>), returns 1 .		
	• If false (argument $A \neq argument B$), returns 0 .		
	listA == listB	$\{1,5,9\} == \{1,-6,9\}$ [ENTER]	{1 0 1}
	Returns a list of 1 s and/or 0 s to indicate if each element in <i>listA</i> is = the corresponding element in <i>listB</i> .		
Euler	Euler		
† graph format screen (scroll down to second screen)	In DifEq graphing mode, uses an algorithm based on the Euler method to solve differential equations. Typically, Euler is less accurate than RK but finds the solutions much quicker.		
eval	eval xValue	Remember that built-in equation v and y2 are case-sensitive:	ariables y1
MATH MISC menu	Returns a list containing the y values of all defined and selected functions evaluated at a real <i>xValue</i> .	y1=x^3+x+5 ENTER y2=2 x ENTER eval 5 ENTER	Done Done {135 10}

Chapter 20: A to Z Function and Instruction Reference

evalF(evalF(expression,variable,value)	evalF(x^3+x+5,x,5) EN	TER 135
CALC menu	Returns the value of <i>expression</i> evaluated with respect to <i>variable</i> at a real or complex <i>value</i> .		
	evalF(expression,variable,list)	evalF(x^3+x+5,x,{3,5}	
	Returns a list containing the values of <i>expression</i> evaluated with respect to <i>variable</i> at each element in <i>list</i> .		{35 135}
Exponent: E	number E power or (expressionA) E (expressionB)	12.3456789E5 [ENTER]	1234567.89
ĒĒ	Returns a real or complex <i>number</i> raised to the <i>power</i> of 10, where <i>power</i> is a real integer such that -999 < <i>power</i> < 999. Any <i>expressions</i> must evaluate to appropriate values.	(1.78/2.34)E2 ENTER	76.0683760684
	<i>list</i> E <i>power</i> or <i>list</i> E <i>(expression)</i> Returns a list in which each element is the corresponding element in <i>list</i> raised to the <i>power</i> of 10.	{6.34,854.6}E3 [ENTER]	{6340 854600}

ExpR	ExpR xList,yList,frequencyList,equationVariable	In Func graphing mode:
STAT CALC menu Built-in equation variables such as y1 , r1 , and xt1 are case-sensitive. Do not use	Fits an exponential regression model $(y=ab^x)$ to real data pairs in <i>xList</i> and <i>yList</i> (y values must be > 0) and frequencies in <i>frequencyList</i> . The regression equation is stored to <i>equationVariable</i> , which must be a built-in equation variable such as y1 , r1 , and xt1 .	{1,2,3,4,5}→L1 ENTER {1 2 3 4 {1,20,55,230,742}→L2 ENTER {1 20 55 230 74 ExpR L1,L2,y1 ENTER ExeRe9
Y1, R1, and XT1.	Values used for <i>xList</i> , <i>yList</i> , and <i>frequencyList</i> are stored automatically to built-in variables xStat , yStat , and fStat , respectively. The regression equation is stored also to built-in equation variable RegEq .	9=a*b^x a=.411389488 b=4.78796057 corr=.97681282 n=5 ■
	ExpR xList,yList,equationVariable	Plot1(1,L1,L2) ENTER Do
	Uses frequencies of 1.	ZData (ENTER)
	ExpR xList,yList,frequencyList	/•
	Stores the regression equation to RegEq only.	
	ExpR xList,yList	· · · · · · · · · · · · · · · · · · ·
	Uses frequencies of 1, and stores the regression equation to RegEq only.	
	ExpR equationVariable	
	Uses xStat , yStat , and fStat for <i>xList</i> , <i>yList</i> , and <i>frequencyList</i> , respectively. These built-in variables must contain valid data of the same dimension; otherwise, an error occurs. The regression equation is stored to <i>equationVariable</i> and RegEq .	

	Uses xStat , yStat , and fStat , and stores the regression equation to RegEq only.		
Factorial: !	number! or (expression)!	6! [ENTER]	720
MATH PROB menu	Returns the factorial of a real integer or non-integer, where $0 \le \text{integer} \le 449$ and $0 \le \text{non-integer} \le 449.9$. For a non-integer, the Gamma function is used to find the factorial. An <i>expression</i> must evaluate to an appropriate value.	12.5! <u>ENTER</u>	1710542068.32
	list!	{6,7,8}! ENTER	{720 5040 40320}
	Returns a list in which each element is the factorial of the corresponding element in <i>list</i> .		
fcstx	fcstx yValue		
† STAT menu	Based on the current regression equation (ReqEq), returns the forecasted x at a real <i>yValue</i> .		
fcsty	fcsty xValue		
† STAT menu	Based on the current regression equation (ReqEq), returns the forecasted y at a real <i>xValue</i> .		

Fill(LIST OPS menu MATRX OPS menu VECTR OPS menu	 Fill(number,listName) Fill(number,matrixName) Fill(number,vectorName) Replaces each element in an existing listName, matrixName, or vectorName with a real or complex number. 	{3,4,5}→L1 [ENTER Fill(8,L1) [ENTER L1 [ENTER Fill((3,4),L1) [ENTER L1 [ENTER {(3,4	{3 4 5} Done {8 8 8} Done (3,4) (3,4)}
Fix	Fix integer or Fix (expression)	Fix 3 ENTER	Done
† mode screen	Sets fixed decimal mode for <i>integer</i> number of decimal places, where $0 \le integer \le 11$. An <i>expression</i> must evaluate to an appropriate integer.	$\pi/2$ [ENTER] Float [ENTER] $\pi/2$ [ENTER]	1.571 Done 1.57079632679
FldOff	FldOff		
† graph format screen (scroll down to second screen)	In DifEq graphing mode, turns off the slope and direction fields. To turn on slope fields, use SlpFld . To turn on direction fields, use DirFld .		
Float	Float	In Radian angle mode:	
† mode screen	Sets floating decimal mode.	Fix 11 ENTER sin ($\pi/6$) ENTER Float ENTER sin ($\pi/6$) ENTER	Done .50000000000 Done .5

fMax(fMax(expression,variable,lower,upper)	fMax(sin x,x,-,,,) [ENTER]
CALC menu	Returns the value at which a local maximum of <i>expression</i> with respect to <i>variable</i> occurs, between real <i>lower</i> and <i>upper</i> values for <i>variable</i> .	1.57079632598
	The tolerance is controlled by the built-in variable tol , whose default is 1 E -5. To view or set tol , press [2nd [MEM] [F4] to display the tolerance editor.	
fMin(fMin(expression,variable,lower,upper)	fMin(sin x,x,⁻π,π) ENTER
CALC menu	Returns the value at which a local minimum of <i>expression</i> with respect to <i>variable</i> occurs, between real <i>lower</i> and <i>upper</i> bounds for <i>variable</i> .	-1.57079632691
	The tolerance is controlled by the built-in variable tol , whose default is 1 E -5. To view or set tol , press [2nd [MEM] [F4] to display the tolerance editor.	
fnInt(fnInt(expression,variable,lower,upper)	fnInt(x ² ,x,0,1) ENTER
CALC menu	Returns the numerical function integral of <i>expression</i> with respect to <i>variable</i> , between real <i>lower</i> and <i>upper</i> bounds for <i>variable</i> .	. 333333333333
	The tolerance is controlled by the built-in variable tol , whose default is 1 E -5. To view or set tol , press [2nd [MEM] [F4] to display the tolerance editor.	
FnOff	FnOff function#,function#,	FnOff 1,3 ENTER Done
† GRAPH VARS menu	Deselects the specified equation function numbers.	

	FnOff Deselects all equation functi	on numbers.	FnOff (ENTER)	Done
FnOn † GRAPH VARS menu	FnOn <i>function</i> #, <i>function</i> #, Selects the specified equatio addition to any others alread	,	FnOn 1,3 ENTER	Done
	FnOn Selects all equation function		FnOn <u>ENTER</u>	Done
For(‡ program editor CTL menu	<pre>:For(variable,begin,end,step) or :loop :End :commands Executes the commands in l number of repetitions is com time through the loop, varia the loop, variable is increment repeated until variable > end the default is 1. You can specify values such sure to specify a negative steepent</pre>	:loop :End :commands oop iteratively, where the trolled by variable. The first ble = begin. At the End of ented by step. The loop is d. If you do not specify step, that begin > end. If so, be	Program segment: : For (A,0,8,2) Disp A ² End : Displays 0, 4, 16, 36, and 64. : For (A,0,8) Disp A ² End : Displays 0, 1, 4, 9, 16, 25, 36, 49, and 6	

Form(LIST OPS menu	Form(" <i>formula</i> ", <i>listName</i>) Generates the contents of <i>listName</i> automatically, based on the attached <i>formula</i> . If you express <i>formula</i> in terms of a list, you can generate one list based on the contents of another.	{1,2,3,4}→L1 ENTER {1 2 3 4} Form("10*L1",L2) ENTER Done L2 ENTER {10 20 30 40}
		{5,10,15,20}→L1 [ENTER] {5 10 15 20} {5 10 15 20}
	The contents of <i>listName</i> are updated automatically if you edit <i>formula</i> or edit a list referenced in <i>formula</i> .	L2 ENTER {50 100 150 200} Form("L1/5",L2) ENTER Done L2 ENTER {1 2 3 4}
fPart	fPart number or fPart (expression)	fPart 23.45 ENTER .45
MATH NUM menu	Returns the fractional part of a real or complex <i>number</i> or <i>expression</i> .	fPart (-17.26*8) ENTER08
	fPart <i>list</i> fPart <i>matrix</i> fPart <i>vector</i>	[[1,-23.45][-99.5,47.15]]→MAT ENTER [[1 -23.45] [-99.5 47.15]]
	Returns a list, matrix, or vector in which each element is the fractional part of the corresponding element in the specified argument.	fPart MAT <u>ENTER</u> [[O45] [⁻ .5 .15]]
▶Frac	<i>number</i> ▶ Frac	1/3+2/7 ENTER .619047619048
MATH MISC menu	Displays a real or complex <i>number</i> as its rational equivalent, a fraction reduced to its simplest terms.	Ans▶Frac ENTER 13/21
	If <i>number</i> cannot be simplified or if the denominator is more than four digits, the decimal equivalent is returned.	

	<i>list</i> Frac <i>matrix</i> Frac <i>vector</i> Frac	{1/2+1/3,1/6-3/8}→L1 [ENTER] {.8333333333333333333333333333333333333
	Returns a list, matrix, or vector in which each element is the rational equivalent of the corresponding element in the argument.	
Func	Func	
† mode screen	Sets function graphing mode.	
gcd(gcd(integerA,integerB)	gcd(18,33) [ENTER] 3
MATH MISC menu	Returns the greatest common divisor of two nonnegative integers.	
	gcd(<i>listA</i> , <i>listB</i>)	gcd({12,14,16},{9,7,5}) ENTER
	Returns a list in which each element is the gcd of the two corresponding elements in <i>listA</i> and <i>listB</i> .	{3 7 1}
Get(Get(variable)	
<pre>‡ program editor I/O menu</pre>	Gets data from a CBL or CBR System or another TI-86 and stores it to <i>variable</i> .	

getKy ‡ program editor I/O menu	getKy Returns the key code for the last key pressed. If no key has been pressed, getKy returns 0 . Refer to the TI-86 key code diagram in Chapter 16.	Program: PROGRAM:CODES :Lb1 TOP :getKy→KEY :While KEY==0 : getKy→KEY :End :Disp KEY :Goto TOP
Goto ‡ program editor CTL menu	Goto <i>label</i> Transfers (branches) program control to the <i>label</i> specified by an existing Lbl instruction.	To break the program, press ON and then F5. Program segment: : : 0→TEMP:1→J : Lb1 TOP : TEMP+J→TEMP : If J<10 : Then : J+1→J : Goto TOP :End : Disp TEMP : :
Greater than: > TEST menu	 numberA > numberB or (expressionA) > (expressionB) Tests whether the condition is true or false. The arguments must be real numbers. If true (numberA > numberB), returns 1. If false (numberA ≤ numberB), returns 0. 	2>0 [ENTER] 1 88>123 [ENTER] 0 -5>-5 [ENTER] 0 (20*5/2)>(18*2) [ENTER] 1

	number>list	1>{1,-6,10} [ENTER]	{0 1 0}
	Returns a list of 1 s and/or 0 s to indicate if <i>number</i> is > the corresponding element in <i>list</i> .		
	listA > listB	{1,5,9}>{1,-6,10} ENTER	{0 1 0}
	Returns a list of 1 s and/or 0 s to indicate if each element in $listA$ is > the corresponding element in $listB$.		
Greater than or	$numberA \ge numberB$ or (expressionA) \ge (expressionB)	2≥0 ENTER	1
equal to: ≥	Tests whether the condition is true or false. The	88≥123 [ENTER]	0
TEST menu	arguments must be real numbers.	-5≥-5 [ENTER]	1
	• If true ($numberA \ge numberB$), returns 1 .	(20 * 5/2)≥(18 * 2) ENTER	1
	• If false (<i>numberA < numberB</i>), returns 0 .		
	$number \ge list$	$1 \ge \{1, -6, 10\}$ ENTER	{1 1 0}
	Returns a list of 1 s and/or 0 s to indicate if <i>number</i> is \geq the corresponding element in <i>list</i> .		
	$listA \ge listB$	{1,5,9}≥{1,-6,10} ENTER	{1 1 0}
	Returns a list of 1 s and/or 0 s to indicate if each element in $listA$ is \geq the corresponding element in $listB$.		
GridOff	GridOff		
† graph format screen	Turns off grid format so that grid points are not displayed.		

GridOn	GridOn		<u>.</u>
† graph format screen	Turns on grid format so that grid points are displayed in rows and columns corresponding to the tick marks on each axis.		
GrStl(GrStl(function#,graphStyle#)	In Func graphing mode:	<u> </u>
CATALOG	Sets the graph style for <i>function</i> #. For <i>graphStyle</i> #, specify an integer from 1 through 7 :	y1=x sin x <u>ENTER</u> GrStl(1,4) <u>ENTER</u> ZStd ENTER	Done Done
	1 = 1 (line) $4 = 1$ (below) $7 = 1$ (dot) $2 = 1$ (thick) $5 = 1$ (path) $3 = 1$ (above) $6 = 1$ (animate)		
	Depending on the graphing mode, some graph styles may not be available.		
h	integerh	In Dec number base mode:	
BASE TYPE menu	Designates a real <i>integer</i> as hexadecimal, regardless of the number base mode setting.	10h <u>(ENTER)</u> 10h+10 (ENTER)	16 26
Hex	Hex	In Hex number base mode:	
† mode screen	Sets hexadecimal number base mode. Results are displayed with the h suffix. In any number base mode, you can designate an appropriate value as binary, decimal, hexadecimal, or octal by using the b, d, h, or o designator, respectively, from the BASE TYPE menu.	F+10b+10o+10d ENTER	23h
	To enter hexadecimal numbers A through F, use the BASE A-F menu. Do not use \boxed{ALPHA} to type a letter.		

►Hex BASE CONV menu	number >Hex list >Hex matrix >Hex vector >Hex Returns the hexadecimal equivalent of the real or complex argument.	In Bin number base mode: 1010*1110 [ENTER 10001100b Ans▶Hex [ENTER 8Ch {100,101,110}▶Hex [ENTER {4h 5h 6h}
Hist	Hist xList,frequencyList	Starting with a ZStd graph screen:
† STAT DRAW menu	 Draws a histogram on the current graph, using the real data in <i>xList</i> and the frequencies in <i>frequencyList</i>. Hist <i>xList</i> Uses frequencies of 1. Hist Uses the data in built-in variables xStat and fStat. These variables must contain valid data of the same dimension; otherwise, an error occurs. 	{1,2,3,4,6,7} > XL [ENTER] {1,2,3,4,6,7} > XL [ENTER] {1,2,3,4,6,7} > FL [ENTER] {1,2,3,4,6,7} > FL [ENTER] {1,2,2,3,5} > FL [ENTER] {1,1,2,2,2,3,3,3,3,3,3,4,4,5,5,5, 7,7] > XL [ENTER] {1,1,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5, 7,7] > XL [ENTER] {1,1,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,7,7,7] > XL [ENTER] {1,1,2,2,2,3,3,3,3,3,3,3,4,4,5,5,5,5,7,7,7] > XL [ENTER] {1,1,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,7,7,7] > XL [ENTER] {1,1,2,2,2,2,3,3,3,3,3,4,4,5,5,5,7,7,7] > XL [ENTER] {1,1,2,2,2,2,3,3,3,3,4,4,5,5,5,7,7,7] > XL [ENTER] {1,1,2,2,2,2,3,3,3,3,4,4,5,5,7,7,7] > XL [ENTER] {1,1,2,2,2,2,3,3,7,7} > XL [ENTER] {1,1,2,2,2,2,3,7,7} > XL [ENTER] {1,1,2,2,2,2,3,7,7} > XL [ENTER] {1,1,2,2,2,2,3,7,7} > XL [ENTER] {1,1,2,2,2,2,3,7}

Horiz † GRAPH DRAW menu	Horiz <i>yValue</i> Draws a horizontal line on the current graph at <i>yValue</i> .	In a ZStd graph screen: Horiz 4.5 ENTER
IAsk CATALOG	IAsk Sets the table so that the user can enter individual values for the independent variable.	
IAuto CATALOG	IAuto Sets the table so that the TI-86 generates the independent-variable values automatically, based on values entered for TblStart and Δ Tbl .	
ident MATRX OPS menu	ident dimension Returns the identity matrix of dimension rows × dimension columns.	ident 4 [ENTER] [[1 0 0 0] [0 1 0 0] [0 0 1 0] [0 0 0 1]]

If ‡ program editor CTL menu	:If condition :command-if-true	Program segment:
	<i>commands</i> If <i>condition</i> is true, executes <i>command-if-true</i> . Otherwise, skips <i>command-if-true</i> . The <i>condition</i> is true if it evaluates to any nonzero number, or false if it evaluates to zero.	:If x<0 :Disp "x is negative" :
	To execute multiple commands if <i>condition</i> is true, use lf:Then:End instead.	
	:If condition :Then :commands-if-true :End :commands	Program segment: : :If x<0 :Then : Disp "x is negative"
	If <i>condition</i> is true (nonzero), executes <i>commands-if-</i> <i>true</i> from Then to End . Otherwise, skips <i>commands-if-</i> <i>true</i> and continues with the next command following End .	: abs(x)→x :End :

lf

imag

	:If condition :Then :commands-if-true :Else :commands-if-false :End :commands	Program segment: : :If x<0 :Then : Disp "x is negative" :Else : Disp "x is positive or zero" :End
	If <i>condition</i> is true (nonzero), executes <i>commands-if-</i> <i>true</i> from Then to Else and then continues with the next command following End .	: :::::::::::::::::::::::::::::::::::::
	If <i>condition</i> is false (zero), executes <i>commands-if-false</i> from Else to End and then continues with the next command following End .	
imag	imag (complexNumber)	imag (3,4) <u>ENTER</u> 4
CPLX menu	Returns the imaginary (nonreal) part of <i>complexNumber</i> . The imaginary part of a real number is always 0.	imag (3∠4) ENTER -2.27040748592
	imag (real,imaginary) returns imaginary. imag (magnitude∠angle) returns magnitude sin angle.	
	imag complexList imag complexMatrix imag complexVector	imag {-2,(3,4),(3∠4)} [ENTER] {0 4 -2.27040748592}
	Returns a list, matrix, or vector in which each element is the imaginary part of the original argument.	

InpSt	InpSt promptString,variable	Program segment:
‡ program editor I/O menu	Pauses a program, displays <i>promptString</i> , and waits for the user to enter a response. The response is stored to <i>variable</i> always as a string. When entering the response, the user should not enter quotation marks.	: InpSt "Enter your name:",STR :
	To prompt for a number or expression instead of a string, use Input .	
	InpSt variable	
	Displays ? as the prompt.	
Input	Input promptString,variable	Program segment:
‡ program editor I/O menu	Pauses a program, displays <i>promptString</i> , and waits for the user to enter a response. The response is stored to <i>variable</i> in the form in which the user enters it.	: :Input "Enter test score:",SCR :
	• A number or expression is stored as a number or expression.	
	• A list, vector, or matrix is stored as a list, vector, or matrix.	
	• An entry enclosed in " marks is stored as a string.	
	Input variable	
	Displays ? as the prompt.	

	Input	Program segment in RectGC graph format:	
	Pauses a program, displays the graph screen, and lets the user update x and y (or r and θ in PolarGC graph format) by moving the free-moving cursor. To resume the program, press <u>ENTER</u> .	: :Input :Disp x,y :	
	Input "CBLGET", variable	Input "CBLGET",L1 ENTER Done	
	Receives list data sent from a CBL or CBR System and stores it to <i>variable</i> on the TI-86. Use this "CBLGET" syntax for both CBL and CBR.		
	You can receive data also by using Get(as described on page 299.		
int	int number or int (expression)	int 23.45 [ENTER] 23	
MATH NUM menu	Returns the largest integer \leq <i>number</i> or <i>expression</i> . The argument can be real or complex.	int -23.45 ENTER -24	
	For a negative non-integer, int returns the integer that is one less than the integer part of the number. To return the exact integer part, use iPart instead.		
	int list int matrix int vector	[[1.25,-23.45][-99,47.15]]→MAT ENTER [[1.25 -23.45] [-99 47.15]]	
	Returns a list, matrix, or vector in which each element is the largest integer less than or equal to the corresponding element in the specified argument.	int MAT <u>ENTER</u> [[1 -24] [-99 47]]	

inter(inter(x1,y1,x2,y2,xValue)	Using points (3,5) and (4,4), find the y value at	
† MATH menu	Calculates the line through points $(x1,y1)$ and $(x2,y2)$ and then interpolates or extrapolates a y value for the specified <i>xValue</i> .	x=1: inter(3,5,4,4,1) [ENTE	R 7
	inter(y1,x1,y2,x2,yValue)	Using points (-4,-7) and (2,6	3), find the x value
	Interpolates or extrapolates an x value for the specified <i>yValue</i> . Notice that points $(x1,y1)$ and $(x2,y2)$ must be entered as $(y1,x1)$ and $(y2,x2)$.	aty=10: inter(-7,-4,6,2,10) [<u>ENTER</u> 3.84615384615
Inverse: ⁻¹	number ⁻¹ or (expression) ⁻¹	5 ⁻¹ [ENTER]	. 2
[2nd] $[x^{-1}]$	Returns 1 divided by a real or complex <i>number</i> , where $number \neq 0$.	(10*6) ⁻¹ [ENTER]	.016666666667
	list ¹	{5,10,2/8} ⁻¹ [ENTER]	{-2 .1 4}
	Returns a list in which each element is 1 divided by the corresponding element in <i>list</i> .		
	squareMatrix ⁻¹	[[1,2][3,4]] ⁻¹ [ENTER]	[[-2 1]
	Returns an inverted <i>squareMatrix</i> , where det $\neq 0$.		[1.55]]
iPart	iPart number or iPart (expression)	iPart 23.45 [ENTER]	23
MATH NUM menu	Returns the integer part of <i>number</i> or <i>expression</i> . The argument can be real or complex.	iPart -23.45 [ENTER]	-23

IS>(‡ program editor CTL menu	iPart <i>list</i> iPart <i>matrix</i> iPart <i>vector</i> Returns a list, matrix, or vector in which each element is the integer part of the corresponding element in the	[[1.25,-23.45][-99 ENTER iPart MAT ENTER	.5,47.15]] → MAT [[1.25 -23.45] [-99.5 47.15]] [[1 -23] [-99 47]]
	specified argument. :IS>(variable,value) :command-if-variable≤value :commands Increments variable by 1. If the result is > value, skips	Program segment: : :0→A :Lbl Start :Disp A	
	$command$ -if-variable \leq value. If the result is \leq value, then $command$ -if-variable \leq value is executed. variable cannot be a built-in variable.	:DISP A :IS>(A,5) :Goto Start :Disp "A is now >5 :	"
LabelOff	LabelOff		
† graph format screen	Turns off axes labels.		
LabelOn	LabelOn		
† graph format screen	Turns on axes labels.		

Lbl	Lbl label	Program segment, assuming a correct	
‡ program editor CTL menu	Creates a <i>label</i> of up to eight characters. A program can use a Goto instruction to transfer control (branch) to a specified label. InpSt stores input as a string, so be sure to store a string to the password variable.	password has already been stored to the password variable: : :Lbl Start :InpSt "Enter password:",PSW :If PSW≠password :Goto Start :Disp "Welcome" :	
lcm(lcm(integerA,integerB)	lcm(5,2) ENTER 10	
MATH MISC menu	Returns the least common multiple of two nonnegative integers.	lcm(6,9) <u>ENTER</u> 18 lcm(18,33) <u>ENTER</u> 198	
LCust(LCust(item#,"title"[,item#,"title",])	Program segment:	
‡ program editor CTL menu	Loads (defines) the TI-86's custom menu, which is displayed when the user presses <u>CUSTOM</u> . The menu can have up to 15 items, shown in three groups of five items. For each <i>item#/title</i> pair:	: :LCust(1,"t",2,"Q'1",3,"Q'2",4,"R K",5,"Euler",6,"QI1",7,"QI2",8,"t Min") :	
	• <i>item</i> # — integer from 1 through 15 that identifies the item's position in the menu. The item numbers must be specified in order, but you can skip numbers.	After executed and when the user presses [CUSTOM]:	
	• " <i>title</i> " — string with up to 8 characters (not counting the quotes) that will be pasted to the current cursor location when the item is selected. This can be a variable name, expression, function name, program name, or any text string.	t Q'1 Q'2 RK Euler H	

numberA < numberB or (expressionA) < (expressionB)	2<0 [ENTER]	0
Tests whether the condition is true or false. The arguments must be real numbers.	88<123 ENTER	1
	-5<-5 [ENTER]	0
• If true (<i>numberA < numberB</i>), returns 1 .	(20*5/2)<(18*3) [ENTER]	1
• If false ($numberA \ge numberB$), returns 0 .		1
number < list	1<{1,-6,10} [ENTER]	{0 0 1}
Returns a list of 1 s and/or 0 s to indicate if <i>number</i> is < the corresponding element in <i>list</i> .		
istA < listB	{1,5,9}<{1,-6,10} ENTER	{0 0 1}
Returns a list of 1 s and/or 0 s to indicate if each element in <i>listA</i> is < the corresponding element in <i>listB</i> .		
$numberA \le numberB$ or (expressionA) \le (expressionB)	2≤0 [ENTER]	0
Tests whether the condition is true or false. The	88≤123 ENTER	1
arguments must be real numbers.	-5≤-5 [ENTER]	1
• If true ($numberA \le numberB$), returns 1 .	(20*5/2) < (18*3) [ENTER]	1
• If false (<i>numberA</i> > <i>numberB</i>), returns 0 .		-
$number \le list$	$1 \le \{1, -6, 10\}$ ENTER	{1 0 1}
Returns a list of 1 s and/or 0 s to indicate if <i>number</i> is \leq the corresponding element in <i>list</i> .		
$istA \le listB$	$\{1,5,9\} \le \{1,-6,10\}$ ENTER	{1 0 1}
Returns a list of 1 s and/or 0 s to indicate if each element in <i>listA</i> is \leq the corresponding element in <i>listB</i> .		
	arguments must be real numbers. • If true (<i>numberA</i> < <i>numberB</i>), returns 1 . • If false (<i>numberA</i> > <i>numberB</i>), returns 0 . <i>number</i> < <i>list</i> Returns a list of 1 s and/or 0 s to indicate if <i>number</i> is < the corresponding element in <i>list</i> . <i>istA</i> < <i>listB</i> Returns a list of 1 s and/or 0 s to indicate if each element in <i>listA</i> is < the corresponding element in <i>listB</i> . <i>numberA</i> < <i>numberB</i> or (<i>expressionA</i>) < (<i>expressionB</i>) Tests whether the condition is true or false. The arguments must be real numbers. • If true (<i>numberA</i> < <i>numberB</i>), returns 1 . • If false (<i>numberA</i> > <i>numberB</i>), returns 1 . <i>uumber</i> < <i>list</i> Returns a list of 1 s and/or 0 s to indicate if <i>number</i> is < the corresponding element in <i>list</i> . <i>istA</i> < <i>listB</i> Returns a list of 1 s and/or 0 s to indicate if <i>number</i> is < the corresponding element in <i>list</i> .	Tests whether the condition is true or false. The arguments must be real numbers. $88<123 \ ENTER$ • If true (numberA < numberB), returns 1.

LgstR

STAT CALC menu

Built-in equation variables such as **y1**, **r1**, and **xt1** are case-sensitive. Do not use **Y1**, **R1**, and **XT1**.

LgstR returns a tolMet value that indicates if the result meets the TI-86's internal tolerance.

- If tolMet=1, the result is within the internal tolerance.
- If tolmet=0, the result is outside the internal tolerance, although it may be useful for general purposes.

 $\verb"LgstR" [iterations,] x List, y List, frequency List, equation Variable$

Fits a logistic regression model $(y=a/(1+be^{cx})+d)$ to real data pairs in *xList* and *yList* and frequencies in *frequencyList*. The regression equation is stored to *equationVariable*, which must be a built-in equation variable such as **y1**, **r1**, and **xt1**. The equation's coefficients always are stored as a list to built-in variable **PRegC**.

The number of *iterations* is optional. If omitted, 64 is the default. A large number of *iterations* may produce more accurate results but may require longer calculation times. A smaller number may produce less accurate results but with shorter calculation times.

Values used for *xList*, *yList*, and *frequencyList* are stored automatically to built-in variables **xStat**, **yStat**, and **fStat**, respectively. The regression equation is stored also to built-in equation variable **RegEq**.

LgstR [iterations,]xList,yList,equationVariable

Uses frequencies of 1.

LgstR [iterations,]xList,yList,frequencyList

Stores the regression equation to **RegEq** only.

LgstR [iterations,]xList,yList

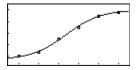
Uses frequencies of 1, and stores the regression equation to **RegEq** only.

```
In Func graphing mode:

{1,2,3,4,5,6}\rightarrowL1 [ENTER]

{1 2 3 4 5 6}

{1,1.3,2.5,3.5,4.5,4.8}\rightarrowL2 [ENTER]


{1 1.3 2.5 3.5 4.5 4...

LgstR L1,L2,y1 [ENTER]
```


Plot1(1,L1,L2) <u>ENTER</u> ZData <u>ENTER</u>

Done

	LgstR [iterations,]equationVariable	
	Uses xStat , yStat , and fStat for <i>xList</i> , <i>yList</i> , and <i>frequencyList</i> , respectively. These built-in variables must contain valid data of the same dimension; otherwise, an error occurs. The regression equation is stored to <i>equationVariable</i> and RegEq .	
	LgstR [iterations]	
	Uses xStat , yStat , and fStat , and stores the regression equation to RegEq only.	
Line(† GRAPH DRAW menu	Line($x1,y1,x2,y2$) Draws a line from point ($x1,y1$) to ($x2,y2$).	In Func graphing mode and a ZStd graph screen: Line(-2,-7,9,8) <u>ENTER</u>

LinR	${\small LinR}\ xList, yList, frequencyList, equation Variable$	In Func graphing mode:
STAT CALC menu Built-in equation variables such as y1, r1, and xt1 are case-sensitive. Do not use Y1, R1, and XT1.	Fits a linear regression model $(y=a+bx)$ to real data pairs in <i>xList</i> and <i>yList</i> and frequencies in <i>frequencyList</i> . The regression equation is stored to <i>equationVariable</i> , which must be a built-in equation variable such as y1 , r1 , and xt1 .	{1,2,3,4,5,6}→L1 ENTER {1 2 3 4 5 6} {4.5,4.6,6,7.5,8.5,8.7}→L2 ENTER {4.5 4.6 6 7.5 8.5 8.7} LinR L1,L2,y1 ENTER LinReg
	Values used for <i>xList</i> , <i>yList</i> , and <i>frequencyList</i> are stored automatically to built-in variables xStat , yStat , and fStat , respectively. The regression equation is stored also to built-in equation variable RegEq .	9=a+bx a=3.21333333 b=.977142857 corr=.97454752 n=6 ■
	LinR xList,yList,equationVariable	Plot1(1,L1,L2) ENTER Done
	Uses frequencies of 1.	ZData (ENTER)
	LinR xList,yList,frequencyList	
	Stores the regression equation to RegEq only.	
	LinR xList,yList	2.
	Uses frequencies of 1, and stores the regression equation to RegEq only.	t z
	LinR equationVariable	
	Uses xStat , yStat , and fStat for <i>xList</i> , <i>yList</i> , and <i>frequencyList</i> , respectively. These built-in variables must contain valid data of the same dimension; otherwise, an error occurs. The regression equation is stored to <i>equationVariable</i> and RegEq .	

Li	n	R

	Uses xStat , yStat , and fStat , and stores the regression equation to RegEq only.	
List entry: { }	{element1,element2,}	{1,2,3}→L1 ENTER {1 2 3}
LIST menu	Defines a list in which each element is a real or complex number or variable.	In RectC complex number mode: {3,(2,4),8*2}>L2 [ENTER] {(3,0) (2,4) (16,0)}
li▶vc	liðvc list	1 i ▶ vc {2,7,-8,0} ENTER
LIST OPS menu VECTR OPS menu	Returns a vector converted from a real or complex <i>list</i> .	[2 7 -8 0]
In	In number or In (expression)	ln 2 [ENTER] .69314718056
LN	Returns the natural logarithm of a real or complex <i>number</i> or <i>expression</i> .	ln (36.4/3) <u>ENTER</u> 2.49595648597 In RectC complex number mode:
	In <i>list</i>	ln -3 ENTER (1.09861228867,3.141
	Returns a list in which each element is the natural logarithm of the corresponding element in <i>list</i> .	ln {2,3} ENTER {.69314718056 1.0986
Ingth	Ingth string	lngth "The answer is:" ENTER 14
STRNG menu	Returns the length (number of characters) of <i>string</i> . The character count includes spaces but not quotation marks.	"The answer is:"→STR [ENTER] The answer is: lngth STR [ENTER] 14

LnR	LnR xList,yList,frequencyList,equationVariable	In Func graphing mode:
STAT CALC menu Built-in equation variables such as y1, r1, and xt1 are case-sensitive. Do not use Y1, R1, and XT1.	Fits a logarithmic regression model ($y=a+b \ln x$) to the real data pairs in <i>xList</i> and <i>yList</i> (x values must be > 0) and frequencies in <i>frequencyList</i> . The regression equation is stored to <i>equationVariable</i> , which must be a built-in equation variable such as y1 , r1 , and xt1 .	{1,2,3,4,5,6}→L1 ENTER {1 2 3 4 5 6} {.6,1.5,3.8,4.2,4.3,5.9}→L2 ENTER {.6 1.5 3.8 4.2 4.3 5.9} LnR L1,L2,y1 ENTER LnRe9
	Values used for <i>xList</i> , <i>yList</i> , and <i>frequencyList</i> are stored automatically to built-in variables xStat , yStat , and fStat , respectively. The regression equation is stored also to built-in equation variable RegEq .	9=3+b1n× a=,252233501 b=2:85543117 corr=.962862433 n=6 ■
	LnR xList,yList,equationVariable	Plot1(1,L1,L2) ENTER Done
	Uses frequencies of 1.	ZData <u>ENTER</u>
	LnR xList,yList,frequencyList	· · · · · · · · · · · · · · · · · · ·
	Stores the regression equation to RegEq only.	· · · · ·
	LnR <i>xList,yList</i>	9
	Uses frequencies of 1, and stores the regression equation to RegEq only.	
	LnR equationVariable	
	Uses xStat , yStat , and fStat for <i>xList</i> , <i>yList</i> , and <i>frequencyList</i> , respectively. These built-in variables must contain valid data of the same dimension; otherwise, an error occurs. The regression equation is stored to <i>equationVariable</i> and RegEq .	

LnR

Uses **xStat**, **yStat**, and **fStat**, and stores the regression equation to **RegEq** only.

log	log number or log (expression)	$\log 2 \text{ ENTER}$.301029995664	
LOG	Returns the logarithm of a real or complex <i>number</i> or <i>expression</i> , where:	log (36.4/3) ENTER In RectC complex number	log (36.4/3) <u>ENTER</u> 1.08398012893 In RectC complex number mode:	
	$10^{logarithm} = number$	log (3,4) <u>ENTER</u> (.69897	0004336,.4027	
	log <i>list</i>	In RectC complex number	mode:	
	Returns a list in which each element is the logarithm of the corresponding element in <i>list</i> .	log {-3,2} [ENTER] {(.4771	2125472,1.364	
LU(LU(matrix,lMatrixName, uMatrixName, pMatrixName)	[[6,12,18][5,14,31][[3,8,18]]	
MATRX MATH menu	Calculates the Crout LU (lower-upper) decomposition of a real or complex <i>matrix</i> . The lower triangular matrix is stored in <i>lMatrixName</i> , the upper triangular matrix in <i>uMatrixName</i> , and the permutation matrix (which describes the row swaps done during the calculation) in <i>pMatrixName</i> . <i>lMatrixName</i> * <i>uMatrixName</i> = <i>pMatrixName</i> * <i>matrix</i>	→MAT [ENTER]	[[6 12 18] [5 14 31] [3 8 18]]	
		LU(MAT,L,U,P) ENTER	Done	
		L (ENTER)	[[6 0 0] [5 4 0]	
			[3 2 1]]	
		U (ENTER)	[[1 2 3] [0 1 4] [0 0 1]]	
		P <u>ENTER</u>	[[1 0 0] [0 1 0] [0 0 1]]	

Matrix entry: []	[[row1][row2]]	[[1,2,3][4,5,6]]→MAT ENTER
[2nd] [[] and [2nd] []]	Defines a matrix entered row-by-row in which each	[[1 2 3] [4 5 6]]
	element is a real or complex number or variable.	
	Enter each [row] as [element, element,].	
max(max(numberA,numberB)	max(2.3,1.4) [ENTER] 2.3
MATH NUM menu	Returns the larger of two real or complex numbers.	
	max(list)	max({1,9,π/2,e^2}) ENTER 9
	Returns the largest element in <i>list</i> .	
	max(<i>listA</i> , <i>listB</i>)	<pre>max({1,10},{2,9}) ENTER {2 10}</pre>
	Returns a list in which each element is the larger of the corresponding elements in <i>listA</i> and <i>listB</i> .	
MBox	MBox xList,frequencyList	Starting with a ZStd graph screen:
† STAT DRAW menu	Draws a modified box plot on the current graph, using	{1,2,3,4,5,9}→XL [ENTER]
	the real data in <i>xList</i> and the frequencies in <i>frequencyList</i> .	{1 2 3 4 5 9} {1,1,1,4,1,1} > FL ENTER
	MBox xList	{1 1 1 4 1 1} 0→xMin:0→yMin [ENTER] 0
		MBox XL,FL ENTER
	Uses frequencies of 1.	F .
	МВох	
	Uses the data in built-in variables xStat and fStat . These	
	variables must contain valid data of the same	
	dimension; otherwise, an error occurs.	

Menu(Menu(item#,"title1",label1[,,item#,"title15",label15])	Program segment:	
‡ program editor CTL menu	 Generates a menu of up to 15 items during program execution. Menus are displayed as three groups of five items. For each item: <i>item#</i> — integer from 1 through 15 that identifies this item's position in the menu. "<i>title</i>" — text string that will be displayed for this item on the menu. Typically, use from 1 through 5 characters; additional characters may not be seen on the menu. 	: :Lbl A :Input "Radius:",RADIUS :Disp "Area is:",π*RADIUS ² :Menu(1,"Again",A,5,"Stop",B) :Lbl B :Disp "The End" Example when executed: Radius:5 Area is: 78.5398163397	
	• <i>label</i> — valid label to which program execution will branch when the user selects this item.	Aggin Stop	
min(min(numberA,numberB)	min(3,-5) [ENTER] -5	
MATH NUM menu	Returns the smaller of two real or complex numbers.	min(-5.2,-5.3) <u>ENTER</u> -5.3 min(5,2+2) <u>ENTER</u> 4	
	min(list)	min({1,3,-5}) ENTER -5	
	Returns the smallest element in <i>list</i> .		
	min(<i>listA</i> , <i>listB</i>)	min({1,2,3},{3,2,1}) [ENTER]	
	Returns a list in which each element is the smaller of the corresponding elements in <i>listA</i> and <i>listB</i> .	{1 2 1}	
mod(mod(numberA,numberB)	mod(7,0) <u>ENTER</u> 7	
MATH NUM menu	Returns <i>numberA</i> modulo <i>numberB</i> . The arguments must be real.	mod(7,3) ENTER 1 mod(-7,3) ENTER 2 mod(7,-3) ENTER -2 mod(-7,-3) ENTER -1	

mRAdd(mRAdd(number,matrix,rowA,rowB)	<pre>[[5,3,1][2,0,4][3,-1,2]]→MAT</pre>
MATRX OPS menu	Returns the result of a "multiply and add row" matrix operation, where:	ENTER [[5 3 1] [2 0 4] [3 -1 2]]
	a. <i>rowA</i> of a real or complex <i>matrix</i> is multiplied by a real or complex <i>number</i> .	mRAdd(5,MAT,2,3)
	b. The results are added to (and then stored in) $rowB$.	[2 0 4] [13 -1 22]]
Multiplication: *	numberA*numberB	2*5 ENTER 10
×	Returns the product of two real or complex numbers.	
	number*list or list*number	4*{10,9,8} ENTER {40 36 32}
	number* matrix or matrix* number number* vector or vector* number	In RectC complex number mode: [8,1,(5,2)]*3 [ENTER]
	Returns a list, matrix, or vector in which each element is <i>number</i> multiplied by the corresponding element in <i>list</i> , <i>matrix</i> , or <i>vector</i> .	[(24,0) (3,0) (15,6)]
	listA*listB	{1,2,3}*{4,5,6} ENTER {4 10 18}
	Returns a list in which each element of <i>listA</i> is multiplied by the corresponding element of <i>listB</i> . The lists must have the same dimension.	
	matrix * vector	[[1,2,3][4,5,6]] → MAT ENTER
	Returns a vector in which <i>matrix</i> is multiplied by <i>vector</i> . The number of columns in <i>matrix</i> must equal	[[1 2 3] [4 5 6]] MAT*[7,8,9] [ENTER]
	the number of elements in <i>vector</i> .	[50 122]

	<i>matrixA</i> * <i>matrixB</i> Returns a matrix in which <i>matrixA</i> is multiplied by	[[2,2][3,4]]→MATA [ENT	ER [[2 2] [3 4]]
	<i>matrixB</i> . The number of columns in <i>matrixA</i> must equal the number of rows in <i>matrixB</i> .	[[1,2,3][4,5,6]] > MATI	B <u>ENTER</u> [[1 2 3] [4 5 6]]
		MATA*MATB [ENTER]	[[10 14 18] [19 26 33]]
multR(multR(number,matrix,row)	[[5,3,1][2,0,4][3,-1,	
MATRX OPS menu	Returns the result of a "row multiplication" matrix operation, where:	(ENTER)	[[5 3 1] [2 0 4] [3 -1 2]]
	a. The specified <i>row</i> of a real or complex <i>matrix</i> is multiplied by a real or complex <i>number</i> .	<pre>multR(5,MAT,2) ENTER</pre>	[[5 3 1]
	b. The results are stored in the same <i>row</i> .		[10 0 20] [3 -1 2]]
nCr	items nCr number	5 nCr 2 [ENTER]	10
MATH PROB menu	Returns the number of combinations of <i>items</i> (n) taken <i>number</i> (r) at a time. Both arguments must be real nonnegative integers.		

nDer(nDer(expression,variable,value)	For δ=.001:	
CALC menu To view or set the value for δ , press [2nd] [MEM] [F4] to display the tolerance screen.	Returns an approximate numerical derivative of <i>expression</i> with respect to <i>variable</i> evaluated at a real or complex <i>value</i> . The approximate numerical derivative is the slope of the secant line through the points: (<i>value</i> - δ ,f(<i>value</i> - δ)) and (<i>value</i> + δ ,f(<i>value</i> + δ)) As the step value δ gets smaller, the approximation usually gets more accurate.	nDer(x^3,x,5) ENTER Forδ=1e-4: nDer(x^3,x,5) ENTER	75.000001 75
	nDer(<i>expression,variable</i>) Uses the current value of <i>variable</i> .	5→x ENTER nDer(x^3,x) ENTER	5 75
Negation: -	- number or - (expression) - list - matrix - vector Returns the negative of the real or complex argument.	-2+5 ENTER -(2+5) ENTER -{0,-5,5} ENTER	3 -7 {0 5 -5}
NOTM MATRX MATH menu VECTR MATH menu	norm matrix Returns the Frobenius norm of a real or complex matrix, calculated as: $\sqrt{\Sigma(real^2+imaginary^2)}$ where the sum is over all elements.	[[1,-2][-3,4]]→MAT [ENTER norm MAT [ENTER] 5.] [[1 -2] [-3 4]] 47722557505

	norm <i>vector</i> Returns the length of a real or complex <i>vector</i> , where: norm [a,b,c] returns $\sqrt{a^2+b^2+c^2}$.	norm [3,4,5] [ENTER]	7.07106781187
	<pre>norm number or norm (expression) norm list Returns the absolute value of a real or complex number or expression, or of each element in list.</pre>	norm -25 <u>ENTER</u> In Radian angle mode: norm {-25,cos -(π/3)	25 } [ENTER] {25 .5}
Normal	Normal	In Eng notation mode: 123456789 [ENTER]	123.456789E6
† mode screen	Sets normal notation mode.	In Sci notation mode: 123456789 ENTER	1.23456789E8
		In Normal notation mode: 123456789 ENTER	123456789

not	not integer	In Dec number base mode:	
BASE BOOL menu	Returns the one's complement of a real <i>integer</i> . Internally, <i>integer</i> is represented as a 16-bit binary number. The value of each bit is flipped (0 becomes 1,	not 78 <u>ENTER</u> In Bin number base mode:	-79
	and vice versa) for the one's complement.	not 1001110 ENTER	
	For example, not 78:	11111111101: Ans⊳Dec [ENTER]	L0001b 79d
	78 = 000000001001110b 1111111110110001b (one's complement)		,,,,
	Sign bit; 1 indicates a negative number		
	To find the magnitude of a negative binary number, determine its two's complement (take the one's complement and then add 1). For example:		
	1111111110110001b = one's complement of 78 0000000001001110b (one's complement) + <u>000000000000001b</u> 0000000001001111b = 79 (two's complement)		
	Therefore, not $78 = -79$.		
	You can enter real numbers instead of integers, but they are truncated automatically before the comparison.		

Not equal to: ≠	$numberA \neq numberB$	2+2≠3+2 ENTER	1
TEST menu	$matrixA \neq matrixB$ $vectorA \neq vectorB$	2+(2≠3)+2 [ENTER]	5
	$stringA \neq stringB$	[1,2]≠[3-2,-1+3] ENTER	0
	Tests whether the condition $argumentA \neq argumentB$ is true or false. Numbers, matrices, and vectors can be real or complex. If complex, the magnitude (modulus) of each element is compared. Strings are case-sensitive.	"A"≠"a" <u>ENTER</u>	1
	• If true (<i>argumentA</i> \neq <i>argumentB</i>), returns 1 .		
	• If false (<i>argumentA</i> = <i>argumentB</i>), returns 0 .		
	$listA \neq listB$	{1,5,9}≠{1,-6,9} ENTER	{0 1 0}
	Returns a list of 1 s and/or 0 s to indicate if each element in <i>listA</i> is \neq the corresponding element in <i>listB</i> .		
nPr	items nPr number	5 nPr 2 ENTER	20
MATH PROB menu	Returns the number of permutations of <i>items</i> (n) taken <i>number</i> (r) at a time. Both arguments must be real nonnegative integers.		
0	integero	In Dec number base mode:	
BASE TYPE menu	Designates a real <i>integer</i> as octal, regardless of the number base mode setting.	100 ENTER 100+10 ENTER	8 18

Oct † mode screen	Oct Sets octal number base mode. Results are displayed with the o suffix. In any number base mode, you can designate an appropriate value as binary, decimal, hexadecimal, or octal by using the b, d, h, or o designator, respectively, from the BASE TYPE menu.	In Oct number base mode: 10+10b+Fh+10d [ENTER] 43o
▶Oct BASE CONV menu	number >Oct list >Oct matrix >Oct vector >Oct Returns the octal equivalent of the real or complex argument.	In Dec number base mode: 2*8 [ENTER] 16 An s → Oct [ENTER] 200 {7,8,9,10}→Oct [ENTER] {70 100 110 120}
OneVar STAT CALC menu (OneVa shows on menu)	 OneVar <i>xList_frequencyList</i> Performs one-variable statistical analysis using real data points in <i>xList</i> and frequencies in <i>frequencyList</i>. The values used for <i>xList</i> and <i>frequencyList</i> are stored automatically to built-in variables xStat and fStat, respectively. OneVar <i>xList</i> Uses frequencies of 1. 	$\{0,1,2,3,4,5,6\} \Rightarrow XL \text{ [ENTER]} \\ \{0\ 1\ 2\ 3\ 4\ 5\ 6\} \\ \text{OneVar XL [ENTER]} \\ \hline 1 - Uar Stats \\ \hline x = 3 \\ \hline x = 2 \\ 5 x = 2.1602469 \\ \sigma x = 2 \\ \mu = 7 \\ \hline \end{bmatrix} \\ \text{Scroll down to see more results.}$

or

OneVar

Uses **xStat** and **fStat** for *xList* and *frequencyList*. These built-in variables must contain valid data of the same dimension; otherwise, an error occurs.

or	integerA or integerB	In Dec number base mode:	
BASE BOOL menu	Compares two real integers bit by bit. Internally, both integers are converted to binary. When corresponding	78 or 23 [ENTER]	95
	bits are compared, the result is 1 if either bit is 1; the	In Bin number base mode:	
	result is 0 only if both bits are 0. The returned value is the sum of the bit results.	1001110 or 10111 ENTER	1011111b
	For example, 78 or $23 = 95$.	Ans⊳Dec ENTER	95d
	$\begin{array}{rrrr} 78 &=& 1001110 \texttt{b} \\ \underline{23} &=& 0010111 \texttt{b} \\ && 1011111 \texttt{b} \end{array} = 95 \end{array}$		
	You can enter real numbers instead of integers, but they are truncated automatically before the comparison.		

Outpt(Outpt(row,column,string)	Program segment:
‡ program editor I/O menu	Displays <i>string</i> beginning at <i>row</i> and <i>column</i> , where $1 \le row \le 8$ and $1 \le column \le 21$.	: :C1LCD :For(i,1,8)
	Outpt(row,column,value)	: Outpt(i,randInt(1,21),"A")
	Displays <i>value</i> beginning at the specified <i>row</i> and <i>column</i> .	: End : Evenue la nomit often evenution:
	Outpt("CBLSEND", listName)	Example result after execution:
	Sends the contents of <i>listName</i> to the CBL or CBR System.	A A A
	You can send data also by using Send(as described on page 350.	A A

P2Reg	P2Reg xList,yList,frequencyList,equationVariable	In Func graphing mode:
STAT CALC menu	Performs a second order polynomial regression using real data pairs in $xList$ and $yList$ and frequencies in	$\{1,2,3,4,5,6\} \rightarrow L1 \text{ ENTER} $ $\{1 \ 2 \ 3 \ 4 \ 5 \ 6\} $ $\{-2,6,11,23,29,47\} \rightarrow L2 \text{ [ENTER]} $
Built-in equation variables such as y1, r1, and xt1 are case-sensitive. Do not use Y1, R1, and XT1.	<i>frequencyList</i> . The regression equation is stored to <i>equationVariable</i> , which must be a built-in equation variable such as y1 , r1 , and xt1 . The equation's coefficients always are stored as a list to built-in variable PRegC .	{-2 6 11 23 29 47} P2Reg L1,L2,y1 ENTER QuadraticRe9 y=ax ² +bx+c n=6 PRegC= {.964285714286 2.564
	Values used for <i>xList</i> , <i>yList</i> , and <i>frequencyList</i> are stored automatically to built-in variables xStat , yStat , and fStat , respectively. The regression equation is stored also to built-in equation variable RegEq .	Plot1(1,L1,L2) ENTER Done ZData ENTER
	P2Reg xList,yList,equationVariable	
	Uses frequencies of 1.	
	P2Reg xList,yList,frequencyList	
	Stores the regression equation to RegEq only.	
	P2Reg xList,yList	
	Uses frequencies of 1, and stores the regression equation to RegEq only.	
	P2Reg equationVariable	
	Uses xStat , yStat , and fStat for <i>xList</i> , <i>yList</i> , and <i>frequencyList</i> , respectively. These built-in variables must contain valid data of the same dimension; otherwise, an error occurs. The regression equation is stored to <i>equationVariable</i> and RegEq .	

P2Reg

Uses **xStat**, **yStat**, and **fStat**, and stores the regression equation to **RegEq** only.

P3Reg xList, yList, frequencyList, equation Variable

P3Reg

STAT CALC menu

Built-in equation variables such as **y1**, **r1**, and **xt1** are case-sensitive. Do not use **Y1**, **R1**, and **XT1**. Performs a third order polynomial regression using real data pairs in *xList* and *yList* and frequencies in *frequencyList*. The regression equation is stored to *equationVariable*, which must be a built-in equation variable such as **y1**, **r1**, and **xt1**. The equation's coefficients always are stored as a list to built-in variable **PRegC**.

Values used for *xList*, *yList*, and *frequencyList* are stored automatically to built-in variables **xStat**, **yStat**, and **fStat**, respectively. The regression equation is stored also to built-in equation variable **RegEq**.

P3Reg xList,yList,equationVariable

Uses frequencies of 1.

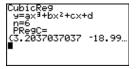
P3Reg xList,yList,frequencyList

Stores the regression equation to **RegEq** only.

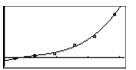
P3Reg xList,yList

Uses frequencies of 1, and stores the regression equation to **RegEq** only.

In **Func** graphing mode:


```
{1,2,3,4,5,6}→L1 ENTER

{1 2 3 4 5 6}


{-6,15,27,88,145,294}→L2 ENTER

{-6 15 27 88 145 294}

P3Reg L1,L2,y1 ENTER
```


Plot1(1,L1,L2) <u>ENTER</u> ZData <u>ENTER</u> Done

${\bf P3Reg}\ equation Variable$

Uses **xStat**, **yStat**, and **fStat** for *xList*, *yList*, and *frequencyList*, respectively. These built-in variables must contain valid data of the same dimension; otherwise, an error occurs. The regression equation is stored to *equationVariable* and **RegEq**.

P3Reg

Uses **xStat**, **yStat**, and **fStat**, and stores the regression equation to **RegEq** only.

P4Reg

STAT CALC menu

Built-in equation variables such as **y1**, **r1**, and **xt1** are case-sensitive. Do not use **Y1**, **R1**, and **XT1**.

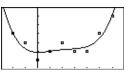
${\bf P4Reg}\ xList, yList, frequencyList, equation Variable$

Performs a fourth order polynomial regression using real data pairs in *xList* and *yList* and frequencies in *frequencyList*. The regression equation is stored to *equationVariable*, which must be a built-in equation variable such as **y1**, **r1**, and **xt1**. The equation's coefficients always are stored as a list to built-in variable **PRegC**.

Values used for *xList*, *yList*, and *frequencyList* are stored automatically to built-in variables **xStat**, **yStat**, and **fStat**, respectively. The regression equation is stored also to built-in equation variable **RegEq**.

${\bf P4Reg}\ xList, yList, equation Variable$

Uses frequencies of 1.


P4Reg xList,yList,frequencyList

Stores the regression equation to $\ensuremath{\mathsf{RegEq}}$ only.

In Func graphing mode:

```
 \begin{array}{c} \{-2,-1,0,1,2,3,4,5,6\} \neq L1 \quad \mbox{ENTER} \\ \{-2 \ -1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6\} \\ \{4,3,1,2,3,2,2,4,6\} \neq L2 \quad \mbox{ENTER} \\ \{4 \ 3 \ 1 \ 2 \ 3 \ 2 \ 4 \ 6\} \\ \mbox{P4Reg L1,L2,y1} \quad \mbox{ENTER} \end{array}
```

Plot1(1,L1,L2) <u>ENTER</u> ZData <u>ENTER</u> Done

P4Reg xList,yList

Uses frequencies of 1, and stores the regression equation to **RegEq** only.

P4Reg equationVariable

Uses **xStat**, **yStat**, and **fStat** for *xList*, *yList*, and *frequencyList*, respectively. These built-in variables must contain valid data of the same dimension; otherwise, an error occurs. The regression equation is stored to *equationVariable* and **RegEq**.

P4Reg

Uses **xStat**, **yStat**, and **fStat**, and stores the regression equation to **RegEq** only.

Param

† mode screen

Pause

‡ program editor CTL menu

Param

Sets parametric graphing mode.

Pause string	Program segment:
Pause value	:
Pause list	:Input "Enter x:",x
Pause matrix	: y 1=x ² -6
Pause vector	:Disp "y1 is:",y1
	:Pause "Press ENTER to graph"
Displays the specified argument and then suspends	:ZStd
program execution until the user presses ENTER.	

Pause

Suspends program execution until the user presses [ENTER].

Percent: % MATH MISC menu	number% or (expression)% Returns a real number or expression divided by 100.	5% [ENTER] 5%*200 [ENTER] (10+5)%*200 [ENTER]	.05 10 30
pEval(pEval(coefficientList,xValue)	Evaluate $y=2x^2+2x+3$ at $x=5$: pEval({2,2,3},5) [ENTER]	63
MATH MISC menu	Returns the value of a polynomial (whose coefficients are given in <i>coefficientList</i>) at <i>xValue</i> .		05
PIOff	PIOff [1,2,3]	PlOff 1,3 ENTER	Done
STAT PLOT menu	Deselects the specified stat plot numbers.		
	PIOff	Ploff ENTER	Done
	Deselects all stat plot numbers.		
PIOn	PIOn [1,2,3]	Plon 2,3 ENTER	Done
STAT PLOT menu	Selects the specified stat plot numbers, in addition to any plot numbers that are already selected.		
	PIOn	Plon ENTER	Done
	Selects all stat plot numbers.		

Plot1(Plot2(Plot3(

† STAT PLOT menu

The syntax and descriptions to the right refer to **Plot1(**, but they apply as well to **Plot2(** and **Plot3(**.

Scatter plot <u>Plot1(1,xListName,yListName,mark)</u> Plot1(1,xListName,yListName)

Defines and selects the plot using real data pairs in *xListName* and *yListName*.

The optional *mark* specifies the character used to plot the points. If you omit *mark*, a box is used.

mark: $1 = box(\Box) 2 = cross(+) 3 = dot(\cdot)$

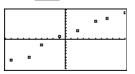
xyLine plot

```
Plot1(2,xListName,yListName,mark)
Plot1(2,xListName,yListName)
```

Modified box plot \oplus

Plot1(3,xListName,1 or frequencyListName,mark) Plot1(3,xListName,1 or frequencyListName) Plot1(3,xListName)

Defines and selects the plot using real data points in *xListName* with the specified frequencies. If you omit 1 *or frequencyListName*, frequencies of 1 are used.


Histogram III

Plot1(4,xListName,1 or frequencyListName)
Plot1(4,xListName)

Box plot 😐

Plot1(5,xListName,1 or frequencyListName)
Plot1(5,xListName)

 $\begin{array}{l} \{-9,-6,-4,-1,2,5,7,10\} \neq L1 \quad \mbox{ENTER} \\ \{-9,-6,-4,-1,2,5,7,10\} \neq L2 \quad \mbox{ENTER} \\ \{-7,-6,-2,1,3,6,7,9\} \neq L2 \quad \mbox{ENTER} \\ \{-7,-6,-2,1,3,6,7,9\} \neq L2 \quad \mbox{ENTER} \\ \mbox{Plot1}(1,L1,L2) \quad \mbox{ENTER} \\ \mbox{Zstd [ENTER]} \\ \end{array}$

Pol	Pol	
† mode screen	Sets polar graphing mode.	
▶Pol	complexNumber ∢Pol	In RectC complex number mode:
CPLX menu	Displays <i>complexNumber</i> in polar form $(magnitude \angle angle)$, regardless of the complex number mode.	√-2 <u>ENTER</u> (0,1.41421356237) Ans▶Pol <u>ENTER</u> (1.41421356237∠1.570
	list ▶Pol matrix ▶Pol vector ▶Pol Returns a list, matrix, or vector in which each element of the argument is displayed in polar form.	{1,√-2} ENTER {(1,0) (0,1.141421356 Ans▶Pol ENTER {(1∠0) (1.4142135623
PolarC	PolarC	In PolarC complex number mode:
† mode screen	Sets polar complex number mode (magnitude \angle angle).	√-2 [ENTER] (1.41421356237∠1.570
Polar complex: \angle	magnitude∠angle	In Radian angle mode and PolarC complex
[2nd] [Z]	Used to enter complex numbers in polar form. The <i>angle</i> is interpreted according to the current angle mode.	number mode: (1,2)+($3 \angle \pi/4$) [ENTER] (5.16990542093 \angle .9226
PolarGC	PolarGC	
† graph format screen	Displays graph coordinates in polar form.	

_		
poly	poly coefficientList	Find the roots of $2x^3-8x^2-14x+20=0$:
† [2nd] [POLY]	Returns a list containing the real and complex roots of a polynomial whose coefficients are given in <i>coefficientList</i> .	poly {2,-8,-14,20} [ENTER] {5 -2 1}
	$a_n x^n + \ldots + a_2 x^2 + a_1 x^1 + a_0 x^0 = 0$	
Power: ^	number^power or (expression)^(expression)	4^2 [ENTER] 16
	Returns <i>number</i> raised to <i>power</i> . The arguments can be real or complex.	2^-5 [ENTER] .03125
	listA^listB	{2,3,4}^{3,4,5} ENTER
	Returns a list in which each element of <i>listA</i> is raised to the power specified by the corresponding element in <i>listB</i> .	{8 81 1024}
	$squareMatrix^{\bullet}power$	[[2,3][4,5]]^3 [ENTER]
	Returns a matrix equivalent to <i>squareMatrix</i> multiplied by itself <i>power</i> number of times, where $0 \le power \le 255$. This is not the same as simply raising each element to <i>power</i> .	[[116 153] [204 269]]
Power of 10: 10^	10 [^] power or 10 [^] (expression)	10 ^1.5 ENTER 31.6227766017
[2nd] [10 ^x]	Returns 10 raised to <i>power</i> or <i>expression</i> , which can be real or complex.	10^-2 ENTER .01

	10 ^{<i>h</i>} <i>list</i> Returns a list in which each element is 10 raised to the power specified by the corresponding element in <i>list</i> .	10^{1.5,-2} [ENTER] {31.6227766017 .01}
prod	prod <i>list</i>	prod {1,2,4,8} [ENTER] 64
LIST OPS menu MATH MISC menu	Returns the product of all real or complex elements in <i>list</i> .	prod {2,7,-8} [ENTER] -112
Prompt	Prompt variableA[,variableB,]	Program segment:
<pre>‡ program editor I/O menu (Promp shows on menu)</pre>	Prompts the user to enter a value for <i>variableA</i> , then <i>variableB</i> , and so on.	: :Prompt A,B,C :
PtChg(PtChg(<i>x</i> , <i>y</i>)	PtChg(-6,2)
† GRAPH DRAW menu	Reverses the point at graph coordinates (x,y) .	
PtOff(PtOff(x,y)	PtOff(3,5)
† GRAPH DRAW menu	Erases the point at graph coordinates (x,y) .	
PtOn(PtOn(x,y)	PtOn(3,5)
† GRAPH DRAW menu	Draws the point at graph coordinates (x,y) .	

PwrR	${\bf PwrR}\ xList, yList, frequencyList, equation Variable$	In Func graphing mode:
STAT CALC menu Built-in equation variables such as y1 , r1 , and xt1 are case-sensitive. Do not use	Fits a power regression model $(y=ax^b)$ to positive real data pairs in <i>xList</i> and <i>yList</i> , using frequencies in <i>frequencyList</i> . The regression equation is stored to <i>equationVariable</i> , which must be a built-in equation variable such as y1 , r1 , and xt1 .	{1,2,3,4,5,6}→L1 [ENTER {1 2 3 4 5 6} {1,17,21,52,75,133}→L2 [ENTER {1 17 21 52 75 133} PwrR L1,L2,y1 [ENTER]
Y1, R1, and XT1.	Values used for <i>xList</i> , <i>yList</i> , and <i>frequencyList</i> are stored automatically to built-in variables xStat , yStat , and fStat , respectively. The regression equation is stored also to built-in equation variable RegEq .	9=a*x^b a=1.43992723 b=2.56096944 corr=.977662979 n=6 ■
	PwrR xList,yList,equationVariable	Plot1(1,L1,L2) [ENTER] Done
	Uses frequencies of 1.	ZData [ENTER]
	PwrR xList,yList,frequencyList	/o
	Stores the regression equation to RegEq only.	
	PwrR xList,yList	a manufacture and a second
	Uses frequencies of 1, and stores the regression equation to RegEq only.	-
	PwrR equationVariable	
	Uses xStat , yStat , and fStat for <i>xList</i> , <i>yList</i> , and <i>frequencyList</i> , respectively. These built-in variables must contain valid data of the same dimension; otherwise, an error occurs. The regression equation is stored to <i>equationVariable</i> and RegEq .	

	PwrR	
	Uses xStat , yStat , and fStat , and stores the regression equation to RegEq only.	
PxChg(PxChg(row,column)	PxChg(10,95)
GRAPH DRAW menu	Reverses the pixel at (<i>row</i> , <i>column</i>), where $0 \le row \le 62$ and $0 \le column \le 126$.	
PxOff(PxOff(row,column)	PxOff(10,95)
GRAPH DRAW menu	Erases the pixel at (row, column), where $0 \le row \le 62$ and $0 \le column \le 126$.	
PxOn(PxOn(row,column)	PxOn(10,95)
GRAPH DRAW menu	Draws the pixel at (row, column), where $0 \le row \le 62$ and $0 \le column \le 126$.	
PxTest(PxTest(row,column)	Assuming the pixel at (10,95) is already on:
GRAPH DRAW menu	Returns 1 if the pixel at (<i>row</i> , <i>column</i>) is on, 0 if it is off; $0 \le row \le 62$ and $0 \le column \le 126$.	PxTest(10,95) ENTER 1
rAdd(rAdd(matrix,rowA,rowB)	[[5,3,1][2,0,4][3,-1,2]] → MAT
MATRX OPS menu	Returns a matrix in which <i>rowA</i> of a real or complex <i>matrix</i> is added to (and stored in) <i>rowB</i> .	ENTER [[5 3 1] [2 0 4] [3 -1 2]]
		rAdd(MAT,2,3) [ENTER] [[5 3 1] [2 0 4] [5 -1 6]]

[5 -1 6]]

Radian	Radian	In Radian angle mode:	
† [2nd] [MODE]	Sets radian angle mode.	sin $(\pi/2)$ ENTER sin 90 ENTER	1 .893996663601
Radian entry: ^r	number ^r or (expression) ^r	In Degree angle mode:	
MATH ANGLE menu	Designates a real <i>number</i> or <i>expression</i> as radians, regardless of the angle mode setting.	$\cos (\pi/2)$ ENTER $\cos (\pi/2)^r$ ENTER	.999624216859 0
	list ^r	cos $\{\pi/2,\pi\}^r$ ENTER	{0 -1}
	Designates each element in a real <i>list</i> as radians.		
rand	rand	You may have different res two examples:	sults for the first
MATH PROB menu	Returns a random number between 0 and 1.	rand <u>ENTER</u>	.943597402492
	To control a random number sequence, first store an	rand <u>ENTER</u>	.146687829222
	integer seed value to rand (such as $0 \rightarrow rand$).	0≯rand:rand <u>ENTER</u> 0≯rand:rand <u>ENTER</u>	.943597402492 .943597402492
randBin(randBin(#ofTrials,probabilityOfSuccess,#ofSimulations)	1→rand:randBin(5,.2	
MATH PROB menu (randBi shows on menu)	Returns a list of random integers from a binomial distribution, where $\#ofTrials \ge 1$ and $0 \le probabilityOfSuccess \le 1$. The $\#ofSimulations$ is an integer ≥ 1 that specifies the number of integers returned in the list.		{0 3 2}
	A seed value stored to rand also affects randBin(.		
	randBin(#ofTrials,probabilityOfSuccess)	0→rand:randBin(5,.2) ENTER 1
	Returns a single random integer.		

randInt(randInt(lower,upper,#ofTrials)	1→rand:randInt(1,10,3) [ENTER]
MATH PROB menu (randIn shows on menu)	Returns a list of random integers bound by the specified integers, <i>lower</i> \leq integer \leq <i>upper</i> . The <i>#ofTrials</i> is an integer \geq 1 that specifies the number of integers returned in the list.	{8 9 3}
	A seed value stored to rand also affects randint(.	
	randInt(lower,upper)	0→rand:randInt(1,10) ENTER 10
	Returns a single random integer.	
randM(randM(rows,columns)	0→rand:randM(2,3) ENTER
MATRX OPS menu	Returns a $rows \times columns$ matrix filled with random one-digit integers (-9 to 9).	[[4 -2 0] [-7 8 8]]
randNorm(randNorm(mean,stdDeviation,#ofTrials)	1→rand:randNorm(0,1,3) ENTER
MATH PROB menu (randN shows on menu)	Returns a list of random numbers from a normal distribution specified by <i>mean</i> and <i>stdDeviation</i> . The $\#ofTrials$ is an integer ≥ 1 that specifies how many numbers are returned. Each returned number could be any real number, but most will be within the interval:	{660585055265 -1.0
	[mean-3 (stdDeviation), mean+3 (stdDeviation)].	
	A seed value stored to rand also affects randNorm(.	
	randNorm(mean,stdDeviation)	0→rand:randNorm(0,1) ENTER
	Returns a single random number.	-1.58570962271

RcGDB † GRAPH menu	RcGDB graphDataBaseName Restores all settings stored in graphDataBaseName. For a list of settings, refer to StGDB on page 361.	
RcPic	RcPic pictureName	
† GRAPH menu	Displays the current graph and adds the picture stored in <i>pictureName</i> .	
real	real (complexNumber)	In Radian angle mode:
CPLX menu	Returns the real part of <i>complexNumber</i> .	real (3,4) [ENTER] 3
	real (real,imaginary) returns real. real (magnitude∠angle) returns magnitude *cos (angle).	real (3∠4) <u>ENTER</u> -1.96093086259
	real complexList real complexMatrix real complexVector	In Radian angle mode: real {-2,(3,4),(3∠4)} [<u>ENTER</u> {-2 3 -1.96093086259}
	Returns a list, matrix, or vector in which each element is the real part of the corresponding element in the argument.	
▶Rec	complexNumber }Rec	In PolarC complex number mode:
CPLX menu	Displays <i>complexNumber</i> in rectangular form (<i>real,imaginary</i>) regardless of the complex number mode.	√-2 <u>ENTER</u> (1.41421356237∠1.570… Ans▶Rec <u>ENTER</u> (0,1.41421356237)

	complexList ▶Rec complexMatrix ▶Rec complexVector ▶Rec Returns a list, matrix, or vector in which each element of the argument is displayed in rectangular form.	In PolarC complex number mode: [(3∠π/6),√-2] [ENTER] [(3∠.523598775598) (Ans⊁Rec [ENTER] [(2.59807621135,1.5)
RectC	RectC	In RectC complex number mode:
† mode screen	Sets rectangular complex number mode (<i>real,imaginary</i>).	√-2 [ENTER] (0,1.41421356237)
RectGC	RectGC	
† graph format screen	Displays graph coordinates in rectangular form.	
RectV	RectV	In RectV vector coordinate mode:
† mode screen	Sets rectangular vector coordinate mode [x y z] .	3 * [4∠5] <u>ENTER</u> [3.40394622556 -11.5…
ref	ref matrix	[[4,5,6][7,8,9]] > MAT [ENTER]
MATRX OPS menu	Returns the row-echelon form of a real or complex <i>matrix</i> . The number of columns must be greater than or equal to the number of rows.	[[4 5 6] [7 8 9]] ref MAT [ENTER] [[1 1.14285714286 1 [0 1 2

Repeat ‡ program editor CTL menu (Repea shows on menu)	:Repeat condition :commands-to-repeat :End :commands Executes commands-to-repeat until condition is true.	Program segment: : :6→N :1→Fact :Repeat N<1 : Fact*N→Fact : N-1→N :End :Disp "6!=",Fact :
Return	Return	Program segment in the calling program:
‡ program editor CTL menu (Retur shows on menu)	In a subroutine, exits the subroutine and returns to the calling program. In the main program, stops execution and returns to the home screen.	: :Input "Diameter:",DIAM :Input "Height:",HT :AREACIRC :VOL=AREA*HT :Disp "Volume =",VOL : AREACIRC subroutine program: PROGRAM:AREACIRC :RADIUS=DIAM/2 :AREA=#*RADIUS ² :Return

RK

† graph format screen (scroll down to second screen)

RK

In **DifEq** graphing mode, uses an algorithm based on the Runge-Kutta method to solve differential equations. Typically, **RK** is more accurate than **Euler** but takes longer to find the solutions.

rnorm	rnorm matrix	[[-5,6,-7][3,3,9][9,-9,-7]] →MAT [ENTER] [[-5,6,-7]
MATRX MATH menu	Returns the row norm of a real or complex <i>matrix</i> . For each row, rnorm sums the absolute values (magnitudes of complex elements) of all elements on that row. The returned value is the largest of the sums.	→MAT [ENTER] [[-5 6 -7] [3 3 9] [9 -9 -7]] rnorm MAT [ENTER] 25
	rnorm vector	rnorm [15,-18,7] [ENTER] 18
	Returns the largest absolute value (or magnitude) in a real or complex <i>vector</i> .	
Root: [×] √	$x^{th}root^{x}\sqrt{number}$ or $x^{th}root^{x}\sqrt{(expression)}$	5 [×] √32 [ENTER] 2
MATH MISC menu	Returns the $x^{th}root$ of <i>number</i> or <i>expression</i> . The arguments can be real or complex.	
	$x^{th}root$ * \sqrt{list}	$5^{x}\sqrt{32,243}$ ENTER {2 3}
	Returns a list in which each element is the $x^{th}root$ of the corresponding element in <i>list</i> .	
	$x^{th}rootList$ * \sqrt{list}	$\{5,2\}^{\times} \sqrt{\{32,25\}}$ [ENTER] $\{2,5\}$
	Returns a list in which each element is the root specified by the corresponding elements in $x^{th}rootList$ and <i>list</i> .	

rotL	rotL integer	In Bin number base mode:
BASE BIT menu	Returns a real <i>integer</i> with bits rotated one to the left. Internally, <i>integer</i> is represented as a 16-bit binary	rotL 0000111100001111 <u>ENTER</u> 1111000011110b
	number. When the bits are rotated left, the leftmost bit rotates to the rightmost bit. rotL 0000111100001111b = 0001111000011110b	Leading zeros are not displayed.
	rotL is not valid in Dec number base mode. To enter hexadecimal numbers A through F , use the BASE A-F menu. Do not use (ALPHA) to type a letter.	
rotR	rotR integer	In Bin number base mode:
BASE BIT menu	Returns a real <i>integer</i> with bits rotated one to the right.	rotR 0000111100001111 [ENTER]
	Internally, <i>integer</i> is represented as a 16-bit binary number. When the bits are rotated right, the rightmost bit rotates to the leftmost bit. rotR 0000111100001111b = 1000011110000111b	1000011110000111b

round(round(number,#ofDecimals) round(number)	round(π,4) ENTER 3.1416
MATH NUM menu	Returns a real or complex <i>number</i> rounded to the specified #ofDecimals (0 to 11). If #ofDecimals is omitted, <i>number</i> is rounded to 12 decimal places.	round($\pi/4$,4) ENTER .7854 round($\pi/4$) ENTER .785398163397
	round(list,#ofDecimals) round(matrix,#ofDecimals) round(vector,#ofDecimals)	round($\{\pi, \sqrt{2}, \ln 2\}, 3$) [ENTER] $\{3.142 1.414 .693\}$
	Returns a list, matrix, or vector in which each element is the rounded value of the corresponding element in the argument. <i>#ofDecimals</i> is optional.	round([[ln 5,ln 3][π,e^1]],2) ENTER [[1.61 1.1] [3.14 2.72]]
rref	rref matrix	[[4,5,6][7,8,9]]→MAT ENTER
MATRX OPS menu	Returns the reduced row-echelon form of a real or complex <i>matrix</i> . The number of columns must be greater than or equal to the number of rows.	[[4 5 6] [7 8 9]] rref MAT <u>ENTER</u> [[1 09999999999999 [0 1 2
rSwap(rSwap(matrix,rowA,rowB)	[[5,3,1][2,0,4][3,-1,2]] > MAT
MATRX OPS menu	Returns a matrix with $rowA$ of a real or complex <i>matrix</i> swapped with $rowB$.	ENTER [[5 3 1] [2 0 4] [3 -1 2]]
		rSwap(MAT,2,3) <u>ENTER</u> [[5 3 1] [3 -1 2] [2 0 4]]

Scatter	Scatter xList,yList	{-9,-6,-4,-1,2,5,7,10} → XL [ENTER]
† STAT DRAW menu (Scatte shows	Draws a scatter plot on the current graph, using the real data pairs in $xList$ and $yList$.	
on menu)	Scatter	ZStd:Scatter XL,YL ENTER
	Uses the data in built-in variables xStat and yStat . These variables must contain valid data of the same dimension; otherwise, an error occurs.	
Sci	Sci	In Sci notation mode:
† mode screen	Sets scientific notation display mode.	123456789 ENTER 1.23456789E8
		In Normal notation mode:
		123456789 ENTER 123456789

Coloct		
Select(LIST OPS menu	Select(xListName,yListName)	{-9,-6,-4,-1,2,5,7,10}→L1 [ENTER] {-9 -6 -4 -1 2 5 7 1
	If a scatter plot or xyline plot is currently selected and plotted on the graph screen, you can select a subset (range) of those data points. The selected data points are stored to <i>xListName</i> and <i>yListName</i> .	$\{-7, -6, -2, 1, 3, 6, 7, 9\} \rightarrow L2$ ENTER $\{-7, -6, -2, 1, 3, 6, 7, 9\} \rightarrow L2$ ENTER $\{-7, -6, -2, 1, 3, 6, 7, 9\}$ Plot1(1,L1,L2):ZStd ENTER After the graph is displayed:
	Select(<i>xListName,yListName</i>) displays the current graph screen and starts an interactive session during which you select a range of data points.	Select(L10,L20) ENTER
	a. Move the cursor to the leftmost (left bound) point of the range you want to select and press ENTER.	
	b. Then move the cursor to the rightmost (right bound) point of the range you want to select and press [ENTER].	Move the cursor to point (2,3) and press ENTER. Then move to (10,9) and press [ENTER].
	A new stat plot of <i>xListName</i> and <i>yListName</i> replaces the plot from which you selected the points.	·····
		L10 [ENTER] {2 5 7 10}
		L20 ENTER {3 6 7 9}
Send(Send(listName)	{1,2,3,4,5}→L1:Send(L1) ENTER
‡ program editor I/O menu	Sends the contents of <i>listName</i> to the CBL or CBR System.	Done

seq(seq(expression, variable, begin, end, step)	seq(x ² ,x,1,8,2) ENTER
MATH MISC menu	Returns a list containing a sequence of numbers created by evaluating <i>expression</i> from <i>variable</i> = <i>begin</i> to <i>variable</i> = <i>end</i> in increments of <i>step</i> .	{1 9 25 49}
	<pre>seq(expression,variable,begin,end)</pre>	seq(x ² ,x,1,8)
	Uses a <i>step</i> of 1.	{1 4 9 16 25 36 49 6
SeqG	SeqG	
† graph format screen	Sets sequential graphing format, in which selected functions are plotted one at a time.	
SetLEdit	SetLEdit column1ListName[,,column20ListName]	{1,2,3,4}→L1 ENTER {1 2 3 4}
LIST OPS menu (SetLE shows on menu)	Removes all lists from the list editor and then stores one or more <i>ListNames</i> in the specified order, starting with	{5,6,7,8}→L2 ENTER {5 6 7 8} SetLEdit L1,L2 ENTER Done
	column 1.	The list editor now contains:
	SetLEdit	
	Removes all lists from the list editor and stores built-in lists xStat , yStat , and fStat in columns 1 through 3, respectively.	3 4 L1(1) =1 C 2 NAMES □ DPS →

Shade(Shade(lowerFunc,upperFunc,xL	eft,xRight,pattern,patternRes)	In Func graphing mode:
GRAPH DRAW menu	Draws <i>lowerFunc</i> and <i>uppe</i> current graph and shades th <i>lowerFunc</i> , <i>upperFunc</i> , <i>xLe</i> style is determined by <i>pattee</i> <i>patternRes</i> (1 through 8). <i>pattern</i> :	ne area bounded by <i>eft</i> , and <i>xRight</i> . The shading	Shade(x-2,x^3-8 x,-5,1,2,3) ENTER
	1 = vertical (default) 2 = horizontal <i>patternRes</i> (resolution):	 3 = negative-slope 45° 4 = positive-slope 45° 	ClDrw:Shade(x^3-8 x,x-2) ENTER
	1 = every pixel (default) 2 = every 2nd pixel 3 = every 3rd pixel 4 = every 4th pixel	5 = every 5th pixel 6 = every 6th pixel 7 = every 7th pixel 8 = every 8th pixel	
	Shade(lowerFunc,upperFunc)		
	Sets $rLeft$ and $rRight$ to V	in and Max , respectively	

Sets *xLeft* and *xRight* to **xMin** and **xMax**, respectively, and uses the defaults for *pattern* and *patternRes*.

shftL	shftL integer	In Bin number base mode:
BASE BIT menu	Returns a real <i>integer</i> with bits shifted one to the left. Internally, <i>integer</i> is represented as a 16-bit binary	shftL 0000111100001111 [ENTER] 1111000011110b
	number. When the bits are shifted left, the leftmost bit is dropped and 0 is used as the rightmost bit.	Leading zeros are not displayed.
	shftL 0000111100001111b = 0001111000011110b \uparrow 0	
	shftL is not valid in Dec number base mode. To enter hexadecimal numbers A through F, use the BASE A-F menu. Do not use <u>ALPHA</u> to type a letter.	
shftR	shftR integer	In Bin number base mode:
BASE BIT menu	Returns a real <i>integer</i> with bits shifted one to the right. Internally, <i>integer</i> is represented as a 16-bit binary	shftR 0000111100001111 [ENTER] 11110000111b
	number. When the bits are shifted right, the rightmost bit is dropped and 0 is used as the leftmost bit.	Leading zeros are not displayed.
	shftR 0000111100001111b = 0000011110000111b	
	shftR is not valid in Dec number base mode. To enter hexadecimal numbers A through F, use the BASE A-F menu. Do not use <u>ALPHA</u> to type a letter.	

ShwSt	ShwSt		
CATALOG	Displays the results of the most recent stat calculation.		
sign	sign number or sign (expression)	sign -3.2 [ENTER]	-1
MATH NUM menu	Returns -1 if the argument is < 0 , 1 if it is > 0 , or 0 if it is $= 0$. The argument must be real.	sign (6+2-8) ENTER	0
	sign <i>list</i>	sign {-3.2,16.8,6+2-8} [ENTER]	
	Returns a list in which each element is -1 , 1, or 0 to indicate the sign of the corresponding element in <i>list</i> .	[1 1 0}
SimulG	SimulG		
† graph format screen	Sets simultaneous graphing format, in which all selected functions are plotted at the same time.		
simult(simult(squareMatrix,vector)	Solve the following for x and y:	
† (2nd) [SIMULT]	Returns a vector containing the solutions to a system of simultaneous linear equations that have the form:	3x - 4y = 7 x + 6y = 6	
	$\begin{array}{l} a_{1,1}x_1+a_{1,2}x_2+a_{1,3}x_3+=b_1\\ a_{2,1}x_1+a_{2,2}x_2+a_{2,3}x_3+=b_2 \end{array}$		3 -4] 1 6]]
	$a_{3,1}x_1 + a_{3,2}x_2 + a_{3,3}x_3 + = b_3$	[7,6]→VEC [ENTER]	[7 6]
	Each row in squareMatrix contains the a coefficients of	simult(MAT,VEC) [ENTER]	[3.5]
	an equation, and <i>vector</i> contains the b constants.	The solution is $x=3$ and $y=.5$.	

sin	sin angle or sin (expression)	In Radian angle mode:
SIN	Returns the sine of <i>angle</i> or <i>expression</i> , which can be real or complex.	sin π/2 ENTER 0 sin (π/2) ENTER 1 sin 45° ENTER .707106781187
	An angle is interpreted as degrees or radians according to the current angle mode. In any angle mode, you can designate an angle as degrees or radians by using the $^{\circ}$ or ' designator, respectively, from the MATH ANGLE menu.	In Degree angle mode: sin 45 ENTER .707106781187 sin $(\pi/2)^r$ ENTER 1
	sin <i>list</i>	In Radian angle mode:
	Returns a list in which each element is the sine of the	$\sin \{0, \pi/2, \pi\}$ [ENTER] $\{0 \ 1 \ 0\}$
	corresponding element in <i>list</i> .	In Degree angle mode:
	sin squareMatrix	sin {0,30,90} [ENTER] {0.51}
The squareMatrix cannot have repeated eigenvalues.	Returns a square matrix that is the matrix sine of <i>squareMatrix</i> . The matrix sine corresponds to the result calculated using power series or Cayley-Hamilton Theorem techniques. This is <i>not</i> the same as simply calculating the sine of each element.	
sin⁻¹	sin ⁻¹ number or sin ⁻¹ (expression)	In Radian angle mode:
[2nd] [SIN-1]	Returns the arcsine of <i>number</i> or <i>expression</i> , which can be real or complex.	sin ⁻¹ .5 [ENTER] .523598775598 sin ⁻¹ {0,.5} [ENTER] {0 .523598775598}
	sin ⁻¹ list	In Degree angle mode:
	Returns a list in which each element is the arcsine of the corresponding element in <i>list</i> .	sin ⁻¹ 1 <u>ENTER</u> 90

sinh	sinh number or sinh (expression)	sinh 1.2 [ENTER]	1.50946135541
MATH HYP menu	Returns the hyperbolic sine of <i>number</i> or <i>expression</i> , which can be real or complex.		
	sinh <i>list</i>	sinh {0,1.2} [ENTER]	
	Returns a list in which each element is the hyperbolic sine of the corresponding element in <i>list</i> .	{	0 1.50946135541}
sinh⁻¹	sinh ⁻¹ number or sinh ⁻¹ (expression)	sinh ⁻¹ 1 [ENTER]	.88137358702
MATH HYP menu	Returns the inverse hyperbolic sine of <i>number</i> or <i>expression</i> , which can be real or complex.		
	sinh ⁻¹ list	sinh ⁻¹ {1,2.1,3} EN	TER
	Returns a list in which each element is the inverse hyperbolic sine of the corresponding element in <i>list</i> .	{.881	37358702 1.4874

SinR

STAT CALC menu

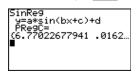
Built-in equation variables such as y1, r1, and xt1 are case-sensitive. Do not use Y1, R1, and XT1.

If you specify a period, the TI-86 may find a solution more quickly or it may find a solution when one would not have been found otherwise. SinR [iterations,]xList,yList[,period],equationVariable

Attempts to fit a sinusoidal regression model $(y=a \sin(bx+c)+d)$ to real data pairs in *xList* and *yList*, using an optional estimated *period*. The regression equation is stored to *equationVariable*, which must be a built-in equation variable such as **y1**, **r1**, and **xt1**. The equation's coefficients always are stored as a list to built-in variable **PRegC**.

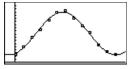
iterations is optional; it specifies the maximum number of times (1 through 16) the TI-86 will attempt to find a solution. If omitted, 8 is used. Typically, larger values result in better accuracy but longer execution times, and vice versa.

If you omit the optional *period*, the difference between values in xList should be equal and in sequential order. If you specify *period*, the differences between x values can be unequal.


Values used for *xList* and *yList* are stored automatically to built-in variables **xStat** and **yStat**, respectively. The regression equation is stored also to built-in equation variable **RegEq**.

The output of **SinR** is always in radians, regardless of the angle mode setting.

SinR [iterations,]xList,yList [,period]


Stores the regression equation to **RegEq** only.

seq(x,x,1,361,30)→L1 [ENTER] {1 31 61 91 121 151 ... {5.5,8,11,13.5,16.5,19,19.5,17, 14.5,12.5,8.5,6.5,5.5}→L2 [ENTER] {5.5 8 11 13.5 16.5... SinR L1,L2,y1 [ENTER]

Plot1(1,L1,L2) <u>ENTER</u> ZData <u>ENTER</u>

Done

SinR [iterations,] equationVariable

Uses **xStat** and **yStat** for *xList* and *yList*, respectively. These built-in variables must contain valid data of the same dimension; otherwise, an error occurs. The regression equation is stored to *equationVariable* and **RegEq**.

SinR [iterations]

Uses **xStat** and **yStat**, and stores the regression equation to **RegEq** only.

SIpFId

† graph format screen (scroll down to second screen)

Solver(

† 2nd [SOLVER]

SIpFId

In **DifEq** graphing mode, turns on slope fields. To turn off direction and slope fields, use **FldOff**.

Solver(equation, variable, guess, {lower, upper})

Solves *equation* for *variable*, given an initial *guess* and *lower* and *upper* bounds within which the solution is sought. *equation* can be an expression, which is assumed to equal 0.

Solver(equation, variable, guess)

Uses -1E99 and 1E99 for upper and lower, respectively.

Solver(equation, variable, {guessLower, guessUpper})

Uses the secant line between *guessLower* and *guessUpper* to start the search. **Solver(** will still search for a solution outside of this range.

If y=5, solve $x^3+y^2=125$ for x. You guess the solution is approximately 4:

5⇒y ENTER 5 Solver(x^3+y²=125,x,4) ENTER Done x ENTER 4.64158883361

()	• • • • • • •	
sortA	SortA <i>list</i>	{5,8,-4,0,-6}→L1 [ENTER] {5 8 -4 0 -6}
LIST OPS menu	Returns a list in which the real or complex elements of <i>list</i> are sorted in ascending order.	SortA L1 [ENTER] {-6 -4 0 5 8}
sortD	SortD list	{5,8,-4,0,-6} > L1 [ENTER]
LIST OPS menu	Returns a list in which the real or complex elements of <i>list</i> are sorted in descending order.	{5 8 -4 0 -6} SortD L1 [ENTER] {8 5 0 -4 -6}
Sortx LIST OPS menu	Sortx xListName,yListName,frequencyListName Sortx xListName,yListName	{3,1,2} >XL ENTER {3 1 2} {0,8,-4} >YL ENTER {0 8 -4}
	In ascending order of x elements, sorts real or complex x and y data pairs and, optionally, their frequencies in <i>xListName</i> , <i>yListName</i> , and <i>frequencyListName</i> . The lists' contents are updated to reflect the changes.	Sortx XL,YL [ENTER] Done XL [ENTER] {1 2 3} YL [ENTER] {8 -4 0}
	Sortx	
	Uses built-in variables xStat and yStat for <i>xListName</i> and <i>yListName</i> , respectively. These built-in variables must contain valid data of the same dimension; otherwise, an error occurs.	
Sorty LIST OPS menu	Sorty xListName,yListName,frequencyListName Sorty xListName,yListName	{3,1,2}>XL ENTER {3 1 2} {0,8,-4}>YL ENTER {0 8 -4} Sorty XL,YL ENTER Done
	In ascending order of y elements, sorts real or complex x and y data pairs and, optionally, their frequencies in <i>xListName</i> , <i>yListName</i> , and <i>frequencyListName</i> . The lists' contents are updated to reflect the changes.	YL [ENTER] {-4 0 8} XL [ENTER] {2 3 1}

	Sorty Uses built-in variables xStat and yStat for <i>xListName</i> and <i>yListName</i> , respectively. These built-in variables must contain valid data of the same dimension; otherwise, an error occurs.		
▶Sph	vector }Sph	In RectV vector coordinate n	node:
VECTR OPS menu	Displays a 2- or 3-element <i>vector</i> as spherical coordinates in $[r \angle \theta \angle 0]$ or $[r \angle \theta \angle \phi]$ form, respectively, even if the display mode is not set for spherical (SphereV).	[0,0,-1]▶Sph ENTER]	079632679∠1 .14159265359]
SphereV	SphereV	In SphereV vector coordinate	e mode:
- † [2nd] [MODE]	Sets spherical vector coordinate mode $[r \angle \theta \angle \phi]$.	[1,2] <u>ENTER</u> [2.23606]	79775∠1.1071…
Square: ²	number ² or (expression) ² list ² squareMatrix ² Returns a real or complex argument multiplied by itself. To square a negative number, enclose it in parentheses.	25 ² (ENTER) (16+9) ² (ENTER) -2 ² (ENTER) (-2) ² (ENTER) {-2,4,25} ² (ENTER)	625 625 -4 4 {4 16 625}
	A <i>squareMatrix</i> multiplied by itself is not the same as simply squaring each element.	[[2,3][4,5]] ² [ENTER]	[[16 21] [28 37]]
Square root: $$	\sqrt{number} or $\sqrt{(expression)}$	√25 ENTER	5
[2nd] [√-]	Returns the square root of <i>number</i> or <i>expression</i> , which can be real or complex.	√(25+11) [<u>ENTER</u>]	6

	\sqrt{list} Returns a list in which element is the square root of the corresponding element in <i>list</i> .	In RectC complex number mode: $\sqrt{\left\{-2,25\right\}}$ [ENTER] $\left\{\left(0,1.41421356237\right)\right\}$ (
St▶Eq(St>Eq(stringVariable,equationVariable)	"5"→x:6 x ENTER
STRNG menu	Converts <i>stringVariable</i> to a number, expression, or equation, and stores it in <i>equationVariable</i> .	ERROR 10 DATA TYPE "5"→x:St▶Eq(x,x):6 x ENTER 30
	To convert the string and retain the same variable name, you can set <i>equationVariable</i> equal to <i>stringVariable</i> .	Program segment: : :InpSt "Enter y1(x):",STR ✓:St▶Eq(STR,y1)
	If you use Input instead of InpSt here, the entered expression is evaluated at the current value of x and the result (not the expression) is stored.	: Input "Enter x:",x :Disp "Result is:",y1(x) : You cannot store a string directly to a built-in equation variable.
StGDB	StGDB graphDataBaseName	
† GRAPH menu	Creates a graph database (GDB) variable that contains the current:	
	 Graphing mode, graph format settings, and range variables. Functions in the equation editor, whether they are selected, and their graph styles. 	
	To restore the database and recreate the graph, use RcGDB (page 343).	

Stop	Stop	Program segment:
‡ program editor CTL menu	Ends program execution and returns to the home screen. Use N==999, not N=999.	:Input N :If N==999 :Stop
Store to variable: → STO+	$number \Rightarrow variable \text{ or } (expression) \Rightarrow variable \\ string \Rightarrow variable \\ list \Rightarrow variable \\ vector \Rightarrow variable \\ matrix \Rightarrow variable \\ Stores the specified argument to variable.$	10→A:4*A ENTER 40 "Hello"→STR ENTER Hello {1,2,3}→L1 ENTER {1 2 3} [1,2,3]→VEC ENTER [1 2 3] [[1,2,3][4,5,6]]→MAT ENTER [[1 2 3] [4 5 6]]
StPic † GRAPH menu	StPic <i>pictureName</i> Stores a picture of the current graph screen to <i>pictureName</i> .	
StReg(STAT CALC menu	StReg(variable) Stores the most recently calculated regression equation to variable. This lets you save a regression equation by storing it to any variable as opposed to a built-in equation variable. 2nd [RCL] EQ [ENTER] recalls the equation. Then [ENTER] evaluates — it at the current value of x.	{1,2,3,4,5}→L1 [ENTER] {1 2 3 4 5} {1,20,55,230,742}→L2 [ENTER] {1 20 55 230 742} ExpR L1,L2:StReg(EQ) [ENTER] B→x [ENTER] Rc1 EQ [ENTER] .41138948780597*4.7879605684671^x [ENTER]

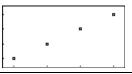
String entry: "	"string"	"Hello"→STR [ENTER]
STRNG menu ‡ program editor I/O menu	Defines a string. When you display a string, it is left- justified on the screen.	Hello Disp STR+", Jan" <u>ENTER</u> Hello, Jan
	Strings are interpreted as text characters, not numbers. For example, you cannot perform a calculation with strings such as "4" or "A*8". To convert between string variables and equation variables, use Eq>St(and St>Eq(as described on pages 290 and 361, respectively.	Done
sub(<pre>sub(string,begin,length)</pre>	"The answer is:"→STR <u>[ENTER</u>]
STRNG menu	Returns a new string that is a subset of <i>string</i> , starting at character number <i>begin</i> and continuing for the specified <i>length</i> .	The answer is: sub(STR,5,6) <u>ENTER</u> answer
Subtraction: -	numberA - numberB	6-2 [ENTER] 4
-	Returns the value of <i>numberB</i> subtracted from <i>numberA</i> . The arguments can be real or complex.	104.5 ENTER 14.5
	list – number	{10,9,8}-4 [ENTER] {6 5 4}
	Returns a list in which <i>number</i> is subtracted from each element of <i>list</i> . The arguments can be real or complex.	In RectC complex number mode: $\{8,1,(5,2)\}-3 [ENTER]$ $\{(5,0) (-2,0) (2,2)\}$

	<pre>listA - listB matrixA - matrixB vectorA - vectorB Returns a list, matrix, or vector that is the result of each element in the second argument subtracted from the corresponding element in the first argument. The two real or complex arguments must have the same dimension.</pre>	<pre>{5,7,9}-{4,5,6} ENTER {1 2 3} [[5,7,9][11,13,15]]-[[4,5,6][7,8, 9]] ENTER [[1 2 3] [4 5 6]] [5,7,9]-[1,2,3] ENTER [4 5 6]</pre>
sum	sum list	sum {1,2,4,8} ENTER 15
MATH MISC menu LIST OPS menu	Returns the sum of all real or complex elements in <i>list</i> .	sum {2,7,-8,0} [ENTER] 1
tan	tan angle or tan (expression)	In Radian angle mode:
(TAN)	Returns the tangent of <i>angle</i> or <i>expression</i> , which can be real or complex.	tan $\pi/4$ [ENTER] 0 tan $(\pi/4)$ [ENTER] 1 tan 45° [ENTER] 1
	An angle is interpreted as degrees or radians according to the current angle mode. In any angle mode, you can designate an angle as degrees or radians by using the ° or ' designator, respectively, from the MATH ANGLE menu.	In Degree angle mode: tan 45 ENTER 1 tan $(\pi/4)^r$ ENTER 1
	tan list	In Degree angle mode:
	Returns a list in which each element is the tangent of the corresponding element in <i>list</i> .	tan {0,45,60} <u>ENTER</u> {0 1 1.73205080757}

tan⁻¹	tan ⁻¹ number or tan ⁻¹ (expression)	In Radian angle mode:
[2nd] [TAN-1]	Returns the arctangent of <i>number</i> or <i>expression</i> , which	tan ⁻¹ .5 [ENTER] .463647609001
	can be real or complex.	In Degree angle mode:
		tan ⁻¹ 1 <u>ENTER</u> 45
	tan ⁻¹ list	In Radian angle mode:
	Returns a list in which each element is the arctangent of the corresponding element in <i>list</i> .	tan ⁻¹ {0,.2,.5} <u>ENTER</u> {0 .19739555985 .463
tanh	tanh number or tanh (expression)	tanh 1.2 [ENTER] .833654607012
MATH HYP menu	Returns the hyperbolic tangent of <i>number</i> or <i>expression</i> , which can be real or complex.	
	tanh list	tanh {0,1.2} [ENTER]
	Returns a list in which each element is the hyperbolic tangent of the corresponding element in <i>list</i> .	{0 .833654607012}
tanh⁻¹	tanh ⁻¹ number or tanh ⁻¹ (expression)	tanh ⁻¹ O <u>ENTER</u> O
MATH HYP menu	Returns the inverse hyperbolic tangent of <i>number</i> or <i>expression</i> , which can be real or complex.	
	tanh ⁻¹ list	In RectC complex number mode:
	Returns a list in which each element is the inverse hyperbolic tangent of the corresponding element in <i>list</i> .	tanh ⁻¹ {0,2.1} <u>ENTER</u> {(0,0) (.51804596584

TanLn(TanLn(expression,xValue)	In Func graphing mode and Radian angle
GRAPH DRAW menu	Draws <i>expression</i> on the current graph and then draws a tangent line at <i>xValue</i> .	mode: ZTrig:TanLn(cos x,π/4) ENTER
Text(Text(row,column,string)	Program segment in Func graphing mode and
† GRAPH DRAW menu	Writes a text <i>string</i> on the current graph beginning at pixel (<i>row,column</i>), where $0 \le row \le 57$ and $0 \le column \le 123$.	a ZStd graph screen: : :y1=x sin x :Text(0,70,"y1=x sin x")
	Text at the bottom of the graph may be covered by a displayed menu. To remove the menu, press [CLEAR].	: When executed:
Then t program editor	Refer to syntax information for If , beginning on page 305. See the If:Then:End and If:Then:Else:End syntax.	

‡ program editor CTL menu


Trace	Trace		
† GRAPH menu	Displays the current graph and lets the user trace a function. From a program, press <u>ENTER</u> to stop tracing and continue with the program.		
Transpose: ^T	matrix ^T	[[1,2][3,4]]→MATA [ENTER]	
MATRX MATH menu	Returns a transposed real or complex matrix in which element <i>row,column</i> is swapped with element	[[1 2 [3 4	
	column,row of matrix. For example:	MATA ^T [ENTER] [[1 3 [2 4	-
	$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{T}$ returns $\begin{bmatrix} a & c \\ b & d \end{bmatrix}$	[[1,2,3][4,5,6][7,8,9]] → MATB	
	For complex matrices, the complex conjugate of each element is taken.	ENTER [[1 2 3 [4 5 6 [7 8 9	j
		MATB ^T [ENTER] [[1 4 7 [2 5 8 [3 6 9]
		In RectC complex number mode:	
		[[(1,2),(1,1)][(3,2),(4,3)]] →MATC [ENTER]	
		[[(1,2) (1,1) [(3,2) (4,3)	
		MATC ^T [ENTER] [[(1,-2) (3,-2) [(1,-1) (4,-3)	

TwoVar	TwoVar xList,yList,frequencyList	{0,1,2,3,4,5,6}→L1 [ENTER]
STAT CALC menu (TwoVa shows on menu)	Performs two-variable statistical analysis on the real data pairs in <i>xList</i> and <i>yList</i> , using the frequencies in <i>frequencyList</i> .	$\{0,1,2,3,4,5,6\} \rightarrow L2 \ [ENTER] \ \{0,1,2,3,4,5,6\} \rightarrow L2 \ [ENTER] \ \{0,1,2,3,4,5,6\} \rightarrow L2 \ [ENTER] \ \{0,1,2,3,4,5,6\} \rightarrow L2 \ [ENTER] \ [Voltamed and [Voltame$
	Values used for <i>xList</i> , <i>yList</i> , and <i>frequencyList</i> are stored automatically to the built-in variables xStat , yStat , and fStat , respectively.	2-Uar Stats ∑=3 ∑x=21 ∑x≥=91 Sx=2.1602469
	TwoVar xList,yList	σx=2 ∳n=7
	Uses frequencies of 1.	Scroll down to see more results.
	TwoVar	Scion down to see more results.
	Uses xStat , yStat , and fStat for <i>xList</i> , <i>yList</i> , and <i>frequencyList</i> . These built-in variables must contain valid data of the same dimension; otherwise, an error occurs.	
unitV	unitV vector	In RectV vector coordinate mode:
VECTR MATH menu	Returns a unit vector of a real or complex <i>vector</i> , where:	unitV [1,2,1] <u>ENTER</u> [.408248290464 .8164
	unitV [a,b,c] returns [<mark>a b c</mark>]	
	and	
	norm is $\sqrt{(\mathbf{a}^2+\mathbf{b}^2+\mathbf{c}^2)}$.	

VC▶II LIST OPS menu VECTR OPS menu	vc≻li vector Returns a real or complex vector converted to a list.	vc▶li [2,7,-8,0] ENTER {2 7 -8 0} (vc▶li [2,7,-8,0]) ² ENTER {4 49 64 0}
Vector entry: [] 2nd [[] and 2nd []]	[element1,element2,] Defines a vector in which each element is a real or complex number or variable.	[4,5,6] \rightarrow VEC [ENTER] [4 5 6] In PolarC complex number mode: [5,(2 $\angle \pi/4$)] \rightarrow VEC [ENTER] [(5 $\angle 0$) (2 \angle .785398163
Vert † GRAPH DRAW menu	Vert <i>xValue</i> Draws a vertical line on the current graph at <i>xValue</i> .	In a ZStd graph screen: Vert -4.5 (ENTER)
While ‡ program editor CTL menu	:While condition :commands-while-true :End :command Executes commands-while-true as long as condition is true.	Program segment: : :1→J :0→TEMP :While J≤20 : TEMP+1/J→TEMP : J+1→J :End :Disp "Reciprocal sums to 20",TEMP :

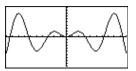
xor	integerA xor integerB	In Dec number base mode:
BASE BOOL menu	Compares two real integers bit by bit. Internally, both integers are converted to binary. When corresponding bits are compared, the result is 1 if either bit (but not both) is 1; the result is 0 if both bits are 0 or both bits are 1. The returned value is the sum of the bit results. For example, 78 xor 23 = 89. 78 = 1001110b 23 = 0010111b 1011001b = 89 You can enter real numbers instead of integers, but they	78 xor 23 ENTER 89 In Bin number base mode: 1001110 xor 10111 [ENTER] 1001110 xor 10111 [ENTER] 1011001b Ans>Dec ENTER 89d
xyline	are truncated automatically before the comparison. xyline xList,yList	{-9,-6,-4,-1,2,5,7,10}→XL [ENTER]
† STAT DRAW menu	Draws a line plot on the current graph, using the real data pairs in $xList$ and $yList$.	$ \{ -9 -6 -4 -1 \overline{2 5 7 1} \\ \{ -7, -6, -2, 1, 3, 6, 7, 9 \} \neq YL [ENTER] \\ \{ -7 -6 -2 1 3 6 7 9 \} $
	xyline	ZStd:xyline XL,YL ENTER
	Uses the data in built-in variables xStat and yStat . These variables must contain valid data of the same dimension; otherwise, an error occurs.	

ZData ZData In **Func** graphing mode: {1 2 3 4} {1,2,3,4}→XL ENTER † GRAPH ZOOM menu Adjusts the window variable values based on the {2,3,4,5}→YL ENTER {2 3 4 5} currently defined statistical plots so that all stat data Plot1(1,XL,YL) [ENTER] points will be plotted, and then updates the graph ZStd [ENTER] screen. ZData [ENTER]

Done

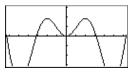
ZDecm	ZDecm
† GRAPH ZOOM menu	Set
	and

ts the window variable values such that $\Delta \mathbf{x} = \Delta \mathbf{y} = .\mathbf{1}$, d then updates the graph screen with the origin centered on the screen.

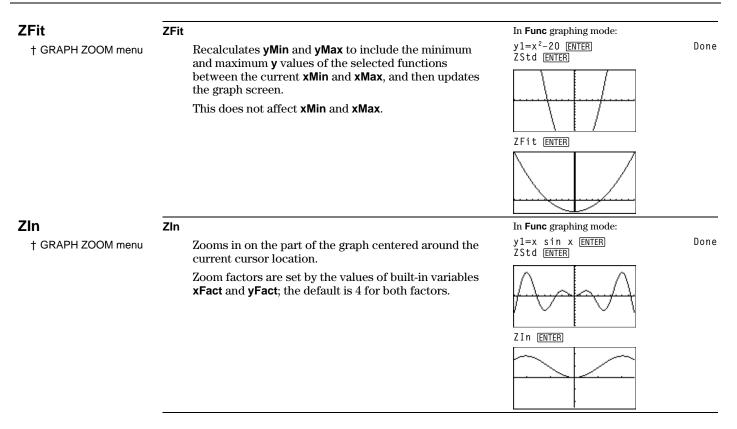

xMin=-6.3	yMin=-3.1
xMax=6.3	yMax=3.1
xScl=1	yScl=1

One of the benefits of **ZDecm** is that you can trace in .1 increments.

In **Func** graphing mode:


y1=x sin x ENTER ZStd [ENTER]

Done

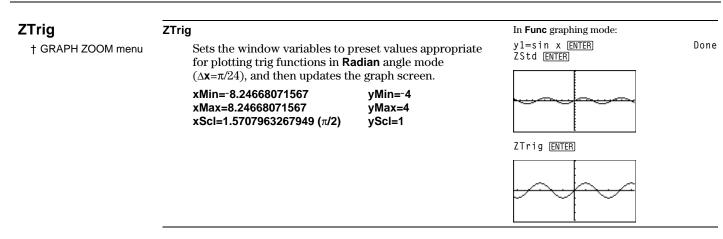


If you trace the graph above, **x** values start at 0 and increment by .1587301587.

ZDecm [ENTER]

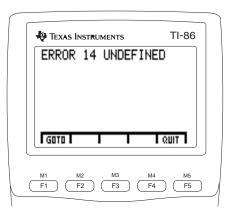
If you trace this graph, the **x** values increment by .1.

ZInt	Zint	In Func graphing mode:
† GRAPH ZOOM menu		y1=der1(x ² -20,x) ENTER Done ZStd ENTER
	The current cursor location becomes the center of the new graph.	
	One of the benefits of Zint is that you can trace in whole	
	number increments.	If you trace the graph above, \mathbf{x} values start at 0 and increment by .1587301587.
		ZInt (ENTER)
		If you trace this graph, \mathbf{x} values increment by 1.


ZOut	ZOut	In Func graphing mode:	
† GRAPH ZOOM menu	Zooms out to display more of the graph, centered around the current cursor location.	y1=x sin x ENTER ZStd ENTER	Done
	Zoom factors are set by the values of built-in variables xFact and yFact ; the default is 4 for both factors.		
ZPrev	ZPrev		

† GRAPH ZOOM menu

Replots the graph using the window variable values of the graph that was displayed before you executed the previous **ZOOM** instruction.


ZRcl	ZRcl		
† GRAPH ZOOM menu	Sets the window variables to values stored previously in the user-defined zoom-window variables, and then updates the graph screen.		
	To set user-defined zoom-window variables, either:		
	 Press GRAPH F3 MORE MORE MORE F1 (ZSTO) to store the current graph's window variables. – or – 		
	• Store the applicable values to the zoom-window variables, whose names begin with z followed by the regular window variable name. For example, store a value for xMin to zxMin , yMin to zyMin , etc.		
ZSqr	ZSqr	In Func graphing mode:	
† GRAPH ZOOM menu	Sets the window variable values to produce "square" pixels where $\Delta x = \Delta y$, and then updates the graph screen.	$y1=\sqrt{(8^2-x^2)}$; $y2=y1$ [ENTER] ZStd [ENTER]	Done
† GRAPH ZOOM menu	1 1	$y1=\sqrt{(8^2-x^2):y2}=-y1$ [ENTER]	Done
† GRAPH ZOOM menu	pixels where $\Delta \mathbf{x} = \Delta \mathbf{y}$, and then updates the graph screen. The center of the current graph (not necessarily the axes intersection) becomes the center of the new graph. In other types of zooms, squares may look like rectangles and circles may look like ovals. Use ZSqr for	$y1=\sqrt{(8^2-x^2):y2}=-y1$ [ENTER]	Done
† GRAPH ZOOM menu	pixels where $\Delta \mathbf{x} = \Delta \mathbf{y}$, and then updates the graph screen. The center of the current graph (not necessarily the axes intersection) becomes the center of the new graph. In other types of zooms, squares may look like	$y1=\sqrt{(8^2-x^2):y2}=-y1$ [ENTER]	Done

ZStd	ZStd		In Func graphing mode:	
† GRAPH ZOOM menu	Sets the window variables to t values, and then updates the g		y1=x sin x ENTER ZStd ENTER	Done
	Func graphing mode:			
	xMin=-10 yMin=-10 xMax=10 yMax=10 xScl=1 yScl=1			
	Pol graphing mode:			
	θMin=0 θMax=6.28318530718 (2π) θStep=.130899693899… (π/2-	xMin=-10 yMin=-10 xMax=10 yMax=10 4) xScl=1 yScl=1		
	Param graphing mode:			
	tMin=0 tMax=6.28318530718 (2π) tStep=.130899693899… (π/24	xMin=-10 yMin=-10 xMax=10 yMax=10) xScl=1 yScl=1		
	DifEq graphing mode:			
	tMin=0 tMax=6.28318530718 (2π) tStep=.130899693899… (π/24 tPlot=0	xMin=-10 yMin=-10 xMax=10 yMax=10) xScl=1 yScl=1 difTol=.001		

A Appendix

TI-86 Menu Map	380
Handling a Difficulty	392
Error Conditions	393
Equation Operating System (EOS [™])	397
TOL (The Tolerance Editor) 2nd [MEM] F4	398
Computational Accuracy	399
Support and Service Information	400
Warranty Information	402

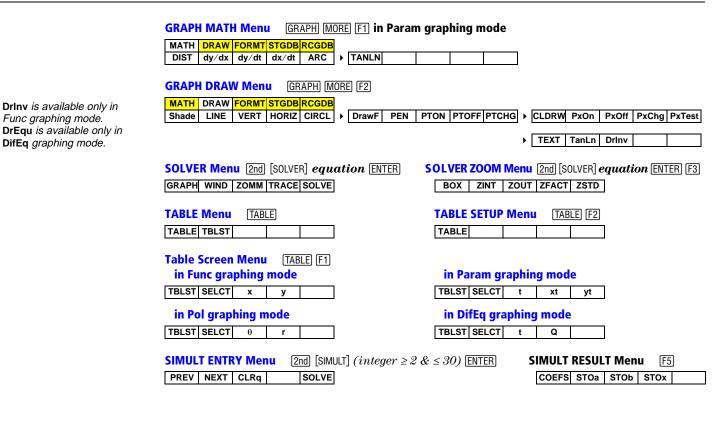
TI-86 Menu Map

This section presents the TI-86 menus as they appear on the TI-86 keyboard, starting at the top. If a menu has items that display other menus, the other menus follow directly below the main menu. In the program editor, the appearance of some menus changes slightly. The menu map omits user-created-name menus, such as the LIST NAMES and CONS USER menus.

The link menus are not	LINK Menu [2nd] [LINK] SEND RECV SND85
available in the program editor.	LINK SEND Menu 2nd [LINK] F1 BCKUP PRGM MATRX GDB ALL > LIST VECTR REAL CPLX EQU > CONS PIC WIND STRNG
	SEND BCKUP Menu 2nd [LINK] F1 F1
	LINK SEND Selection Screen Menu 2nd [LINK] F1 data type XMIT SELCT ALL+ ALL-
	LINK SND85 Menu 2nd [LINK] F3 MATRX LIST VECTR REAL CPLX > CONS PIC STRNG
In the program editor, DrEqu is available as a GRAPH menu item.	GRAPH Menu GRAPH in Func graphing mode y(x)= WIND ZOOM TRACE MATH DRAW FORMT STGDB EVAL STPIC RCPIC

r(0)_	WIND	700M	TDACE	CDADU				EODMI	STOP	RCGDB			STDIC	RCPIC		1
r(θ)=	WIND	2001	TRACE	GRAFH		MAIN	DRAW	FURIN	31606	RCGDB	•	EVAL	STFIC	KCFIC		1
								_								
GRAP	I Men	GR.	APH] in	Param	gra	phin	g mod	e								
E(t)=	WIND	ZOOM	TRACE	GRAPH	•	MATH	DRAW	FORMT	STGDB	RCGDB	•	EVAL	STPIC	RCPIC		
					-											
GRAP	- Mon			DifEq	arar	hina	mode									
UNAFI						-										
Q'(t)=	WIND	INITC	AXES	GRAPH	►F	ORMT	DRAW	ZOOM	TRACE	EXPLR	►	EVAL	STGDB	RCGDB	STPIC	RCF
Equati	on Edi	itor Me		GRAPH	E 1			nhina	mada							
-quar						ili Fui	ic gra	pining	noue							
y(x)=	WIND			GRAPH		ili rui	ic gra	pining	noue							
			TRACE			ALL+	ALL-									
y(x)=	WIND	ZOOM	TRACE	GRAPH			5									
y(x)= x	WIND y	ZOOM INSf	TRACE DELf	GRAPH SELCT	•	ALL+	ALL-	STYLE		<u> </u>						
y(x)= x	WIND y	ZOOM INSf	TRACE DELf	GRAPH SELCT	•	ALL+	ALL-	STYLE								
y(x)= x	WIND y	ZOOM INSf	TRACE DELf	GRAPH SELCT	•	ALL+	ALL-	STYLE		<u> </u>						
y(x)= x Equati	WIND y ion Edi	ZOOM INSf	TRACE DELf enu	GRAPH SELCT	▶ [_	ALL+	ALL-	STYLE	ode							
y(x)= x Equat	WIND y on Edi WIND	ZOOM INSf itor Me ZOOM	TRACE DELf enu	GRAPH SELCT GRAPH	▶ [_	ALL+ in Pol	ALL-	STYLE	ode							
y(x)= x Equati r(θ)= θ	WIND y on Edi WIND r	ZOOM INSf itor Me ZOOM INSf	TRACE DELf enu TRACE DELf	GRAPH SELCT GRAPH GRAPH SELCT	→ [- F1 i → [-	ALL+ in Pol ALL+	ALL-	STYLE	ode							
y(x)= x Equati r(θ)= θ	WIND y on Edi WIND r	ZOOM INSf itor Me ZOOM	TRACE DELf enu TRACE DELf	GRAPH SELCT GRAPH	→ [- F1 i → [-	ALL+ in Pol ALL+	ALL-	STYLE	ode	 						
y(x)= x Equati r(θ)= θ	WIND y on Edi WIND r	ZOOM INSf itor Me ZOOM INSf	TRACE DELf enu (TRACE DELf enu (GRAPH SELCT GRAPH GRAPH SELCT	→ [- F1 i → [-	ALL+ in Pol ALL+	ALL-	STYLE	ode	 						

Equation Editor Menu GRAPH F1 in DifEq graphing mode


Q'(t)=	WIND	INITC	AXES	GRAPH	
t	Q	INSf	DELf	SELCT	►

-					
Г	•	ALL+	ALL-	STYLE	

	GRAPH	I VARS	i (Grap	oh Vari	ia <mark>bles</mark>)	Me	enu	GRAPH) (F1) in	the p	rogran	n eo	litor o	nly			
	y(x)=	WIND	ZOOM	TRACE	GRAPH												
	y	х	xt	yt	t		r	θ	Q1	Q'1	t	•	FnOn	FnOff	Axes	QI	dTime
												►	fldRes				
	GRAPH) (Win	dow V	ariable	es) I	Menu	GRA	PH F2	in the	e progr	am	editor	only			
	y(x)=	WIND	ZOOM	TRACE	GRAPH												
	xMin	xMax	xScl	yMin	yMax		yScl	tMin	tMax	tSte	p 0Min	•	θMax	θStep	tPlot	difTol	xRes
												•	EStep				
	GRAP	1 ZOOI	M Men	u GF	RAPH) (F	3											
To display the GRAPH ZOOM	y(x)=	WIND	ZOOM	TRACE	GRAPH												
menu in DifEq mode, press [GRAPH] [MORE] [F3].	BOX	ZIN	ZOUT	ZSTD	ZPREV	•	ZFIT	ZSQR	ZTRIG	3 ZDEC	MZDAT	\	ZRCL	ZFACT	ZOOMX	ZOOMY	ZINT
												•	ZSTO				
	GRAPH		H Men	u GF	RAPH (M	ORE) F1 i	n Func	: graph	ning m	ode						
DifEq graphing mode has no	MATH	DRAW	FORMT	STGDE	RCGDE												
GRAPH MATH menu.	ROOT	dy∕dx	∫f(X)	FMIN	FMAX		INFLO	YICP1	ISEC1	DIST	Γ ARC	•	TANLN				

GRAPH MATH Menu GRAPH MORE [F1] in Pol graphing mode

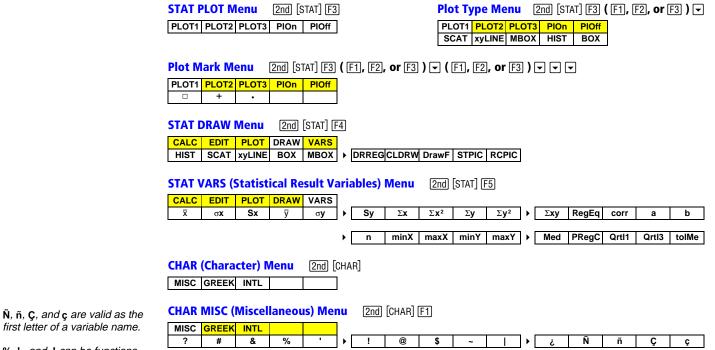
MATH	DRAW	FORMT	STGDB	RCGDB
DIST	dy/dx	dr∕dθ	ARC	TANLN

	PRGM Menu PRGM
	NAMES EDIT
	Program Editor Menu PRGM F2 program name ENTER
	PAGE↓ PAGE↑ I/O CTL INSC → DELC UNDEL :
	PRGM I/O (Input/Output) Menu PRGM F2 program name ENTER F3
	PAGE↓ PAGE↑ I/O CTL INSc
	Input Promp Disp DispG DispT + CITbI Get Send getKy CILCD + " Outpt InpSt
	PRGM CTL (Control) Menu PRGM F2 programName ENTER F4
	PAGE↓ PAGE↑ I/O CTL INSC K Then Flee Fee Fee Fee State While Dense Menu Ltd. Cote > IC. DC. Dense Detur Star
	If Then Else For End + While Repea Menu Lbl Goto + IS> DS< Pause Retur Stop
	► DelVa GrSti LCust
	POLY ENTRY Menu [2nd [POLY] (integer $\ge 2 \& \le 30$) [ENTER POLY RESULT Menu [F5]
	CLRq SOLVE COEFS STOa
	CUSTOM Menu CUSTOM
Use the CUSTOM menu to create your own menu	
(Chapter 2).	CATLG-VARS Menu [2nd] [CATLG-VARS]
	CATLG ALL REAL CPLX LIST + VECTR MATRX STRNG EQU CONS + PRGM GDB PIC STAT WIND
	CATLG-VARS Selection Menu 2nd [CATLG-VARS] [F1] or select a data type

PAGE↓ PAGE↑ CUSTM BLANK

	lenu	2nd [UALU											
evalF	nDer	der1	der2	fnInt		fMin	fMax	arc						
MATRX] [MATR		_	I	Matrix	Editor				2 mati	rixNa	me [ENTE
NAMES	EDIT	MATH	OPS	CPLX			INSr	DELr	INSc	DELc	REAL			
MATRX				d) [MATI		F3								
NAMES	EDIT	MATH	OPS	CPLX										
det	т	norm	eigVl	eigVc		rnorm	cnorm	LU	cond					
MATRX	OPS	(Opera	tions)	Menu	F	Ond IV	1ATRX] (F	11						
	EDIT	MATH	OPS	CPLX				_				1	1	
NAMES dim	EDIT Fill	MATH ident] ▶ [aug	rSwap	_	multR	mRAdd	▶ randM			
dim MATRX	Fill CPLX	ident Menu	OPS ref	CPLX rref	•	aug		_	multR	mRAdd	▶ randM	[[
dim MATRX NAMES	Fill CPLX EDIT	ident (Menu MATH	OPS ref 2nd OPS	CPLX rref [MATR CPLX	•	aug		_	multR	mRAdd	▶ randM			
dim MATRX	Fill CPLX	ident Menu	OPS ref	CPLX rref	•	aug		_	multR	mRAdd	▶ randM			
dim MATRX NAMES conj	Fill CPLX EDIT real	ident (<mark>Menu</mark> MATH imag	OPS ref 2nd OPS	CPLX rref [MATR CPLX angle	•	aug	rSwap	rAdd		<u> </u>	▶ randM	vector	rNam	e (ENTER)
dim MATRX NAMES	Fill CPLX EDIT real Menu	ident (<mark>Menu</mark> MATH imag	OPS ref 2nd OPS abs	CPLX rref [MATR CPLX angle] ▶ [x] [Ē]	aug	rSwap	rAdd		<u> </u>		vector	rName	e (ENTER)
dim MATRX NAMES conj VECTR	Fill (CPLX EDIT real Menu EDIT	ident Menu MATH imag 2nd MATH	OPS ref 2nd OPS abs [VECTR OPS	CPLX rref] [MATR CPLX angle] ▶ [×] Œ]	aug 5	rSwap	rAdd	Menu	<u> </u>		vector	rNamo	e (ENTER)
dim MATRX NAMES conj VECTR NAMES	Fill (CPLX EDIT real Menu EDIT	ident Menu MATH imag 2nd MATH	OPS ref 2nd OPS abs [VECTR OPS	CPLX rref [MATR CPLX angle] CPLX] ▶ [×] Œ]	aug 5	rSwap	rAdd	Menu	<u> </u>		vector	rName	e (ENTER)

NAMES EDIT MATH OPS CPLX dim Fill POI PCyl PSph ► PRec li>vc vc>li VECTR CPLX Menu 2nd [VECTR] F5 NAMES EDIT MATH OPS CPLX conj real imag abs angle CPLX (Complex Number) Menu 2nd [CPLX] conj real imag abs angle Conj real imag abs angle MATH Menu 2nd [CPLX] conj real imag abs angle MATH Menu 2nd [MATH] [MATH] NUM PROB ANGLE HYP MISC ► INTER MATH NUM PROB ANGLE HYP MISC ► isign min max mod MATH PROB ANGLE HYP MISC ► sign min max mod NUM	VECTR OPS (Operations) Menu 2nd [VECTR] F4											
VECTR CPLX Menu 2nd [VECTR] [F5] NAMES EDIT MATH OPS CPLX conj real imag abs angle CPLX (Complex Number) Menu 2nd [CPLX] conj real imag abs angle MATH Menu 2nd [MATH] MATH Menu 2nd [MATH] NUM PROB ANGLE HYP MISC ▶ INTER	NAMES	EDIT	MATH	OPS	CPLX							
NAMES EDIT MATH OPS CPLX conj real imag abs angle CPLX (Complex Number) Menu [CPLX] conj real imag abs angle MATH Menu [CPLX] conj real imag abs angle MATH Menu [2nd] [CPLX] MATH Menu [2nd] [MATH] NUM PROB ANGLE HYP MISC MATH NUM PROB ANGLE HYP MISC round iPart fPart int abs > sign min max mod MATH PROB (Probability) Menu 2nd [MATH] F2 NUM PROB ANGLE HYP MISC randN randN I nPr nCr rand randIn randN randBi	dim	Fill	Pol	⊧Cyl	▶Sph	► Rec	li⊧vc	vc⊁li				
conj real imag abs angle CPLX (Complex Number) Menu 2nd [CPLX] conj real imag abs angle MATH mag abs angle > PRot MATH Menu 2nd [CPLX] MATH Menu 2nd [MATH] NUM PROB ANGLE HYP MISC > MATH NUM Number) Menu 2nd [MATH] F1 NUM PROB ANGLE HYP MISC > sign min max mod MATH PROB (Probability) Menu 2nd [MATH] F2 NUM PROB ANGLE HYP MISC > randN randN NUM PROB ANGLE HYP MISC > randN randN mod MATH PROB ANGLE HYP MISC > randN randN randN MATH PROB ANGLE HYP MISC		CPLX	Menu	2nd		F5]						
CPLX (Complex Number) Menu 2nd [CPLX] conj real imag abs angle ▶ ▶Rec ▶Pol MATH Menu 2nd [MATH] NUM PROB ANGLE HYP MISC ▶ INTER MATH NUM (Number) Menu 2nd [MATH] [F1] Image: Sign min max mod MATH PROB ANGLE HYP MISC round iPart fPart int abs MATH PROB (Probability) Menu 2nd [MATH] [F2] Image: Sign min max mod MATH PROB ANGLE HYP MISC ! nPr nCr randin > MATH ANGLE Menu 2nd [MATH] [F3] Image: Sign min max mod Image: Sign min max mod	NAMES	EDIT	MATH	OPS	CPLX							
conj real imag abs angle > PRec >Pol MATH Menu (2nd) [MATH] NUM PROB ANGLE HYP MISC > INTER MATH NUM PROB ANGLE HYP MISC > INTER MATH NUM PROB ANGLE HYP MISC > inter NUM PROB ANGLE HYP MISC > sign min max mod MATH PROB (Probability) Menu 2nd [MATH] F2 NUM PROB ANGLE HYP MISC > randN randBi I nPr nCr rand randIn > randN randBi Imax MATH ANGLE Menu 2nd [MATH] F3	conj	real	imag	abs	angle							
MATH Menu [2nd] [MATH] NUM PROB ANGLE HYP MISC > INTER MATH NUM (Number) Menu 2nd [MATH] F1 MATH NUM (Number) Menu 2nd [MATH] F1 NUM PROB ANGLE HYP MISC round iPart fPart int abs > sign min max mod MATH PROB (Probability) Menu 2nd [MATH] F2 NUM PROB ANGLE HYP MISC + randN randBi		•					-					
NUM PROB ANGLE HYP MISC > INTER MATH NUM (Number) Menu 2nd [MATH] F1 NUM PROB ANGLE HYP MISC > sign min max mod round iPart fPart int abs > sign min max mod MATH PROB (Probability) Menu 2nd [MATH] F2 NUM PROB ANGLE HYP MISC > randN randBi	conj	real	inag	aus	angle	PRec	FUI					
MATH NUM (Number) Menu 2nd [MATH] F1 NUM PROB ANGLE HYP MISC round iPart fPart int abs > sign min max mod MATH PROB (Probability) Menu 2nd [MATH] F2												
NUM PROB ANGLE HYP MISC round iPart fPart int abs > sign min max mod MATH PROB (Probability) Menu 2nd [MATH] F2 NUM PROB ANGLE HYP MISC . randln . 1 nPr nCr rand randln . . . MATH ANGLE Menu 2nd [MATH] F3	NUM	PROB	ANGLE	HYP	MISC	► INTER						
round iPart fPart int abs sign min max mod MATH PROB (Probability) Menu 2nd [MATH] F2 NUM PROB ANGLE HYP MISC + randln + randN randBi 1 nPr nCr rand randln + randN randBi						nd) [MATH] (F1					
MATH PROB (Probability) Menu 2nd [MATH] F2 NUM PROB ANGLE HYP MISC ! nPr nCr rand randIn randBi MATH ANGLE Menu 2nd [MATH] F3) cign	min	max	mod			
NUM PROB ANGLE HYP MISC ! nPr nCr rand randIn ▶ randBi MATH ANGLE Menu (2nd) (MATH) F3	Tound	irail	IFait	m	aus	, sign		шал	mou			
! nPr nCr rand randIn ▶ randN randBi MATH ANGLE Menu (2nd) [MATH] F3			-	bility)		2nd [MA	.TH] (F2)					
MATH ANGLE Menu (2nd) [MATH] [F3]	NUM	PROB	ANGLE	HYP	MISC	· · · · · ·	-					
	!	nPr	nCr	rand	randIn	randN	randBi					
	MATH					F3						

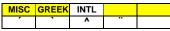

NUM	PROB	ANGLE	HYP	MISC
0	r	-	▶DMS	

NUM	PROB	ANGLE	HYP	MISC	1											
sinh	cosh	tanh	sinh ⁻¹	cosh ⁻¹	•	tanh ⁻¹	<u> </u>	<u> </u>			1					
					I'L				1		J					
матн	MISC	(Misce	laneo	us) Me	nu	2nd] [MATH]	F5								
NUM	PROB	ANGLE	HYP	MISC	1											
sum	prod	seq	lcm	gcd	•	Frac	%	pEval	X√	eval						
	-	ants) N	/lenu	[2nd] [CON	s]										
BLTIN	EDIT	USER														
BLTIN	EDIT	USER			1											
Na	k	Cc	ec	Rc	•	Gc	g	Ме	Мр	Mn	•	μ 0	ε 0 3	h	с	
CONV	(Conv	Cc ersions) Men	u (2nd	1 [.] L	ONV]	•	-						h	с	
CONV		Cc ersions			1 [.] L	ONV]	•	-	Mp ENRGY					h	с	
CONV LNGTH CONV	(Convo AREA LNGTH	Cc ersions VOL) Men TIME th) Me	u <u>2n</u> TEMP] ▶ [ONV]	FORCE	-						h	c	
CONV LNGTH CONV LNGTH	(Convo AREA LNGTH AREA	Cc ersions VOL I (Leng VOL) Men TIME th) Me	u (2nd TEMP enu (TEMP] ▶ [2nd]	ONV] MASS [CONV	FORCE	PRESS	ENRGY	POWER] •	SPEED)			
CONV LNGTH CONV	(Convo AREA LNGTH	Cc ersions VOL) Men TIME th) Me	u <u>2n</u> TEMP] ▶ [ONV]	FORCE	-						h fermi	c	
CONV LNGTH CONV LNGTH	(Convo AREA LNGTH AREA cm	Cc ersions VOL I (Leng VOL m) Men TIME th) Me TIME in	u (2nd TEMP enu (TEMP] ▶ [2nd]) ▶ [ONV] MASS [CONV	FORCE	PRESS	ENRGY	POWER] •	SPEED)			
CONV LNGTH CONV LNGTH mm	(Convo AREA LNGTH AREA cm	Cc ersions VOL I (Leng VOL m) Men TIME th) Me TIME in	u (2nd TEMP enu (TEMP ft] ▶ [2nd]) ▶ [ONV] MASS [CONV	FORCE	PRESS	ENRGY	POWER] •	SPEED)			 fa

CONV	VOL (V	olume	e) Men	u (2nd	d) [(CONV] [F	3									
LNGTH	AREA	VOL	TIME	TEMP							_					
liter	gal	qt	pt	oz		cm ³	in³	ft ³	m³	cup		tsp	tbsp	ml	galUK	ozl
CONV		/lenu	[2nd]	CONV] [F	4											
LNGTH	AREA	VOL	TIME	TEMP												
sec	mn	hr	day	yr	•	week	ms	μs	ns							
		(Temp	eratur	e) Men	u	2nd	[CONV] (F5								
LNGTH		VOL	TIME	TEMP												
°C	°F	°K	°R													
CONV				[CONV] (RE) (F1)										
MASS	FORCE		ENRGY	POWER							-					
gm	kg	lb	amu	slug		ton	mton									
CONV) [CONV]		DRE) (F2]									
Ν	dyne	tonf	kgf	lbf												
		-	sure) M			d [CON	V] [<u>MOR</u>	E F3								
			ENRGY						1	r	-					
atm	bar	N/m²	lb/in²	mmHg		mmH ₂	inHg	inH20]					
			gy) Me] [conv]	[MORE] F 4								
			ENRGY						•		-					
J	cal	Btu	ft-lb	kw-hr		eV	erg	I-atm								

CONV POWER Menu 2nd [CONV] (MORE) [F5]	CONV SPEED Menu [2nd] [CONV] [MORE] [MORE] [F1]
MASS FORCE PRESS ENRGY POWER	SPEED
hp W ftlb/s cal/s Btu/m	ft/s m/s mi/hr km/hr knot
STRNG Menu [2nd] [STRNG] " sub Ingth Eq+St St+Eq	
LIST Menu [2nd] [LIST]	LIST NAMES Menu 2nd [LIST] F3
{ } NAMES EDIT OPS	{ } NAMES EDIT OPS
	fStat xStat yStat
List Editor Menu 2nd [LIST] F4	
{ } NAMES " OPS > REAL	
LIST OPS (Operations) Menu 2nd [LIST] F5	
dimL sortA sortD min max → sum prod	seq livvc vcvli v Fill aug cSum Deltal Sortx
	Sorty Select SetLE Form
The (Number) BASE Menu [2nd] [BASE]	BASE A-F (Hexadecimal) Menu [2nd] [BASE] [F1]
The (Number) BASE Menu 2nd BASE A-F TYPE CONV BOOL BIT	BASE A-F (Hexadecimal) Menu 2nd [BASE] [F1
A-F TYPE CONV BOOL BIT	ATYPECONVBOOLBITBCDEF
A-F TYPE CONV BOOL BIT BASE TYPE Menu [2nd] [BASE] F2	A TYPE CONV BOOL BIT B C D E F BASE CONV (Conversions) Menu 2nd [BASE] F3
A-F TYPE CONV BOOL BIT	ATYPECONVBOOLBITBCDEF

	BASE BOOL (Boolean) Menu 2nd [BASE] F4 BASE BIT Menu 2nd [BASE] F5
	A-F TYPE CONV BOOL BIT and or xor not rotR rotL shftR shftL
	TEST (Relational) Menu 2nd [TEST] == < > ≤ ≥
	MEM (Memory) Menu [2nd] [MEM] RAM DELET RESET TOL CIRENT
	MEM DELET (Delete) Menu 2nd [MEM] F2 ALL REAL CPLX LIST VECTR > MATRX STRNG EQU CONS PRGM > GDB PIC
	ALL REAL CPLX LIST VECTR MATRX[STRNG EQU CONS PRGM > GDB PIC
	RAM DELET RESET TOL CirEnt ALL MEM DFLTS
	STAT (Statistics) Menu [2nd [STAT]
When you press [2nd] [STAT] [F2], the list editor and list	CALC EDIT PLOT DRAW VARS > FCST
menu are displayed.	STAT CALC (Calculations) Menu [2nd [STAT] F1
	CALC EDIT PLOT DRAW VARS OneVa TwoVa LinR LnR ExpR > PwrR SinR LgstR P2Reg P3Reg > P4Reg StReg



%, ', and ! can be functions.

All CHAR GREEK menu items are valid variable-name characters, including the first letter. π ([2nd] [π]) is not valid as a character; π is a constant on the TI-86.

[2nd] [CHAR] [F2] CHAR GREEK Menu MISC GREEK INTL δ θ α ß Δ λ γ 8 μ ρ Σ Ω σ Ó

CHAR INTL (International Letter Symbols) Menu 2nd [CHAR] F3

Handling a Difficulty

1 If you cannot see anything on the screen, you may need to adjust the contrast (Chapter 1).

- To darken the screen, press and release 2nd, and then press and hold .
- To lighten the screen, press and release 2nd, and then press and hold $\overline{\checkmark}$.
- 2 If an error menu is displayed, follow the steps in Chapter 1. Refer to the Error Conditions section of the Appendix (page 393) for details about specific errors, if necessary.
- ④ If the busy indicator (dotted line) is displayed in the top-right corner, a graph or program has paused; the TI-86 is waiting for input. Press ENTER to continue or press ON to break.
- If the calculator does not seem to work at all, be sure the batteries are fresh and that they are installed properly. Refer to battery information in Chapter 1.

Error Conditions

When the TI-86 detects an error, it displays an error message **ERROR** # *type* and the error menu. Chapter 1 describes how to correct an error. This section describes possible causes for the errors and examples. To find the proper arguments for a function or instruction, as well as restrictions on those arguments, refer to Chapter 20: A to Z Function and Instruction Reference.

o not ng. The efined	01 OVERFLOW	 You attempted to enter a number that is beyond the calculator's range. You attempted to execute an expression with a result that is beyond the calculator's range.
	02 DIV BY ZERO	 You attempted to divide by zero. You attempted a linear regression with a vertical line.
	03 SINGULAR MAT	 You attempted to use a singular matrix (determinate = 0) as the argument for ⁻¹, Simult, or LU.
		• You attempted a regression with at least one inappropriate list.
		• You attempted to use a matrix with repeated eigenvalues as the argument for exp , cos , or sin .
	04 DOMAIN	• You attempted to use an argument that is out of the range of valid values for the function or instruction.
		• You attempted a logarithmic or power regression with a -x or an exponential regression with a -y.
	05 INCREMENT	The increment in seq is 0 or has the wrong sign; the increment for a loop is 0 .
	06 BREAK	You pressed [0N] to break a program, DRAW instruction, or expression evaluation.
	07 SYNTAX	You entered a value; look for misplaced functions, arguments, parentheses, or commas; check the syntax description in the A to Z Reference.

Errors 1 through 5 do not occur during graphing. The TI-86 allows for undefined values on a graph.

08 NUMBER BASE	 You entered an invalid digit in a number base, such as 7b.
	$\label{eq:constraint} \bullet \mbox{You attempted an operation that is not allowed in $Bin, Oct $, or Hex base mode.}$
09 MODE	You attempted to store to a window variable of a noncurrent graphing mode. or to use an instruction valid only in noncurrent graphing modes; for example, using DrInv in Pol , Param , or DifEq graphing mode.
10 DATA TYPE	• You entered a value or variable that is an inappropriate data type.
	• You entered an argument that is an inappropriate data type for a function or an instruction, such as a program name for sortA .
	 In an editor, you entered a data type that is not allowed; check the appropriate chapter.
	• You attempted to store data to a protected data type, such as a constant, program, picture, or graph database.
	• You attempted to store inappropriate data to a restricted built-in variable, such as the list names xStat , yStat , and fStat .
11 ARGUMENT	You attempted to execute a function or instruction without all the arguments.
12 DIM MISMATCH	You attempted to use two or more lists, matrices, or vectors as arguments, but the dimensions of all arguments are not equal, such as {1,2}+{1,2,3} .
13 DIMENSION	• You entered an argument with an inappropriate dimension.
	• You entered a matrix or vector dimension < 1 or > 255 or a noninteger.
	• You attempted to invert a matrix that is not a square matrix.
14 UNDEFINED	You are referencing a variable that currently is not defined.
15 MEMORY	Memory is insufficient to perform the desired command; you must delete items from memory (Chapter 17) before executing this command.
16 RESERVED	You attempted to use a built-in variable inappropriately.
17 INVALID	You attempted to reference a variable or use a function where it is not valid.

	18 ILLEGAL NEST	You attempted to use an invalid function in an argument for seq(or a CALC function; for example, der1(der1(x^3,x),x)) .
	19 BOUND	You defined an upper bound that is less than the specified lower bound or a lower bound that is greater than the specified upper bound.
	20 GRAPH WINDOW	 One or more window variable values is incompatible with the others for defining the graph screen; for example, you defined xMax < xMin. Window variables are too small or too large to graph correctly; for example, you attempted to zoom out beyond the calculator's range.
	21 ZOOM	A ZOOM operation resulted in an error; you attempted to define \ensuremath{ZBOX} with a line.
	22 LABEL	In programming, the Goto instruction label is not defined with a Lbl instruction.
	23 STAT	• You attempted a stat calculation with at least one inappropriate list, such as a list with less than two data points.
		• At least one element of a frequency list is < 0 .
		• $(xMax - xMin)/xScl \le 63$ must be true when plotting a histogram.
	24 CONVERSION	When converting measurements, the units are incompatible, as in volts to liters.
	25 SOLVER	 In the solver editor, the equation does not contain a variable. You attempted to graph with the cursor positioned on bound.
	26 SINGULARITY	In the solver editor, the equation contains a singularity, which is a point at which the function is not defined.
	27 NO SIGN CHNG	The solver did not detect a sign change.
	28 ITERATIONS	The solver has exceeded the maximum permitted number of iterations.
Ď	29 BAD GUESS	• The initial guess was outside the specified bounds.
		• The initial guess and several points around the guess are undefined.

Errors 26 through 29 occur during the solving process. Examine a graph of the function or a graph of the variable vs. left-rt in the SOLVER. If the equation has a solution, change bounds and/or the initial guess.

30 DIF EQ SETUP	In DifEq graphing mode, equations in the equation editor must be from Q'1 to Q'9 and each must have an associated initial condition from Q11 to Q19 .
31 DIF EQ MATH	The step size used by the fitting algorithm has become too small; check the equations and initial values; try a larger value for the window variable difTol ; try changing tMin or tMax to examine a different region of the solution.
32 POLY	All coefficients are 0 .
33 TOL NOT MET	The algorithm cannot return a result accurate to the requested tolerance.
34 STAT PLOT	You attempted to display a stat plot that references an undefined list.
35 AXES	You attempted to plot a DifEq graph with improper axes set.
36 FLD/ORDER	 You attempted to plot a 2nd-order or higher differential equation with SlpFld field format set; change field format or modify the order. We attempted to plot a 2nd order or higher differential equation with
	 You attempted to plot a 3rd-order or higher differential equation with DirFld field format set; change field format or modify the order.
37 LINK MEMORY FULL	You attempted to transmit an item with insufficient available memory in the receiving unit; skip the item or cancel the transmission.
38 LINK TRANSMISSION ERROR 39 LINK DUPLICATE NAME	 Unable to transmit item; check to see that the cable is firmly connected to both units and the receiving unit is ready to receive data (Chapter 18). You pressed ON to break during transmission. You attempted to transmit an item when an item with the same name already exists in the receiving unit.

Equation Operating System (EOS™)

The Equation Operating System (EOS) governs the order of evaluation on the TI-86. Calculations within parentheses are evaluated first, and then EOS evaluates functions within an expression in this order:

1st	Functions that are entered after the	e argument, such as ²	2, -1	', !	,°,	r, and	l conversions
-----	--------------------------------------	----------------------------------	-------	-------------	-----	--------	---------------

- 2nd Powers and roots, such as 2^5 or $5^x\sqrt{32}$
- 3rd Single-argument functions that precede the argument, such as $\sqrt{(, \sin(, \cos \log \theta))}$
- 4th Permutations (**nPr**) and combinations (**nCr**)
- 5th Multiplication, implied multiplication, and division
- 6th Addition and subtraction
- 7th Relational functions, such as > or \leq
- 8th Logic operator and
- 9th Logic operators or and xor

Implied Multiplication

The TI-86 recognizes implied multiplication, so you need not press \times to express multiplication in all cases. For example, the TI-86 interprets 2π , $4\sin(46)$, 5(1+2), and (2*5)7 as implied multiplication.

Parentheses

All calculations inside a pair of parentheses are completed first. For example, in the expression **4(1+2)**, EOS evaluates **1+2** inside the parentheses first, and then multiplies **3** by **4**.

4*1+2	6
4(1+2)	ь
111112/	12

Within a priority level, EOS evaluates functions from left to right.

Multi-argument functions, such as **nDeriv(A2,A,6)**, are evaluated as they are encountered.

TI-86 implied multiplication rules differ from those of the TI-85. For example, the TI-86 evaluates 1/2x as (1/2)*x, while the TI-85 evaluates 1/2x as 1/(2*x). You can omit the close parenthesis ()) at the end of an expression. All open parenthetical elements are closed automatically at the end of an expression. This is also true for open parenthetical elements that precede the store or display-conversion instructions.

Open parentheses after list names, matrix names, or equation function names are not interpreted as implied multiplication. Arguments that follow these open parentheses are specified list elements, matrix elements, or values for which to solve the equation function.

TOL (The Tolerance Editor) [2nd [MEM] [F4]

On the TI-86, the computational accuracy of some functions is controlled by the variables tol and δ . The values stored to these variables may affect the speed at which the TI-86 calculates or plots.

TOLERANCE tol=1e-5 ໓=.001

The variable tol defines the tolerance in calculating the functions fnInt(, fMin(, fMax(, and arc(, and the GRAPH MATH operations $\Sigma f(x)$, FMIN, FMAX, and ARC (Chapter 6). tol must be a positive value $\geq 1E-12$.

The value stored to δ must be a positive real number. δ defines the step size the TI-86 uses to calculate the functions **arc** in **dxNDer** mode; **nDer**; and the operations **dy/dx**, **dr/d** θ , **dy/dt**, **dx/dt**, **INFLC**, **TANLN**, and **ARC**, all in **dxNDer** mode (Chapter 6).

To store a value to tol or δ on the home screen or in a program, use STO. You can select tol and δ from the CATALOG. Also, you can enter tol directly and select δ from the CHAR GREEK menu.

Computational Accuracy

To maximize accuracy, the TI-86 carries more digits internally than it displays. Values are stored in memory using up to 14 digits with a 3-digit exponent.

- You can store values up to 12 digits long to most window variables. To **xScl**, **yScl**, **tStep**, and θ**Step**, you can store values up to 14 digits long.
- When a value is displayed, the displayed value is rounded as specified by the mode setting (Chapter 1), with a maximum of 12 digits and a 3-digit exponent.
- Chapter 4 describes calculations in hexadecimal, octal, and binary number bases.

Support and Service Information

Product Support

Customers in the U.S., Canada, Puerto Rico, and the Virgin Islands

For general questions, contact Texas Instruments Customer Support:

phone: **1-800-TI-CARES (1-800-842-2737)** e-mail: **ti-cares@ti.com**

For technical questions, call the Programming Assistance Group of Customer Support:

phone: **1-972-917-8324**

Customers outside the U.S., Canada, Puerto Rico, and the Virgin Islands

Contact TI by e-mail or visit the TI Calculator home page on the World Wide Web.

e-mail: ti-cares@ti.com Internet: education.ti.com

Product Service

Customers in the U.S. and Canada Only

Always contact Texas Instruments Customer Support before returning a product for service.

Customers outside the U.S. and Canada

Refer to the leaflet enclosed with this product or contact your local Texas Instruments retailer/distributor.

Other TI Products and Services

Visit the TI Calculator home page on the World Wide Web.

education.ti.com

Warranty Information

Customers in the U.S. and Canada Only

One-Year Limited Warranty for Commercial Electronic Product

This Texas Instruments electronic product warranty extends only to the original purchaser and user of the product.

Warranty Duration. This Texas Instruments electronic product is warranted to the original purchaser for a period of one (1) year from the original purchase date.

Warranty Coverage. This Texas Instruments electronic product is warranted against defective materials and construction. THIS WARRANTY IS VOID IF THE PRODUCT HAS BEEN DAMAGED BY ACCIDENT OR UNREASONABLE USE, NEGLECT, IMPROPER SERVICE, OR OTHER CAUSES NOT ARISING OUT OF DEFECTS IN MATERIALS OR CONSTRUCTION.

WARRANTY DISCLAIMERS. ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO THE ABOVE ONE-YEAR PERIOD. TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF THE PRODUCT OR OTHER INCIDENTAL OR CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES INCURRED BY THE CONSUMER OR ANY OTHER USER.

Some states/provinces do not allow the exclusion or limitation of implied warranties or consequential damages, so the above limitations or exclusions may not apply to you.

Legal Remedies. This warranty gives you specific legal rights, and you may also have other rights that vary from state to state or province to province.

Warranty Performance. During the above one (1) year warranty period, your defective product will be either repaired or replaced with a reconditioned model of an equivalent quality, (at TI's option) when the product is returned, postage prepaid, to Texas Instruments Service Facility. The warranty for the repaired or replacement unit will continue for the warranty of the original unit or six (6) months, whichever is longer. Other than the postage requirement, no charge will be made for such repair and/or replacement. TI strongly recommends that you insure the product for value prior to mailing.

Software. Software is licensed, not sold. TI and its licensors do not warrant that the software will be free from errors or meet your specific requirements. **All software is provided "AS IS."**

Copyright. The software and any documentation supplied with this product are protected by copyright.

Australia & New Zealand Customers only

One-Year Limited Warranty for Commercial Electronic Product

This Texas Instruments electronic product warranty extends only to the original purchaser and user of the product.

Warranty Duration. This Texas Instruments electronic product is warranted to the original purchaser for a period of one (1) year from the original purchase date.

Warranty Coverage. This Texas Instruments electronic product is warranted against defective materials and construction. This warranty is void if the product has been damaged by accident or unreasonable use, neglect, improper service, or other causes not arising out of defects in materials or construction.

Warranty Disclaimers. Any implied warranties arising out of this sale, including but not limited to the implied warranties of merchantability and fitness for a particular purpose, are limited in duration to the above one-year period. Texas Instruments shall not be liable for loss of use of the product or other incidental or consequential costs, expenses, or damages incurred by the consumer or any other user.

Some jurisdictions do not allow the exclusion or limitation of implied warranties or consequential damages, so the above limitations or exclusions may not apply to you.

Legal Remedies. This warranty gives you specific legal rights, and you may also have other rights that vary from jurisdiction to jurisdiction.

Warranty Performance. During the above one (1) year warranty period, your defective product will be either repaired or replaced with a new or reconditioned model of an equivalent quality (at TI's option) when the product is returned to the original point of purchase. The repaired or replacement unit will continue for the warranty of the original unit or six (6) months, whichever is longer. Other than your cost to return the product, no charge will be made for such repair and/or replacement. TI strongly recommends that you insure the product for value if you mail it.

Software. Software is licensed, not sold. TI and its licensors do not warrant that the software will be free from errors or meet your specific requirements. All software is provided "AS IS."

Copyright. The software and any documentation supplied with this product are protected by copyright.

All Customers outside the U.S. and Canada

For information about the length and terms of the warranty, refer to your package and/or to the warranty statement enclosed with this product, or contact your local Texas Instruments retailer/distributor.

" (string), 216, 227 " (List Editor menu), 156 ! (factorial), 294 >, 362 \geq (greater than or equal to), 56, 301 \leq (less than or equal to), 55. 312 \neq (not equal to), 56, 326 π (pi), 48 $\sqrt{\text{(square root)}}$, 360 $\left[\checkmark\right]$ (square root) key, 48 $\overline{\mathbf{x}}$ (statistical result variable), 193 \overline{V} (statistical result variable). 193⁻¹ (inverse), 48, 309 →dim, 184, 281 →dimL, 282 f(x) (function numerical integral), 96, 98 Δ Tbl (table step), 113 σx (statistical result variable),

193

$$\begin{split} & \Sigma x^2 \ (\text{statistical result variable}), \\ & 193 \\ & \text{ oy} \ (\text{statistical result variable}), \\ & 193 \\ & \text{ w} \ (\text{percent}), 52, 334 \\ & < (\text{less than}), 55, 312 \\ & = (\text{assign to}), 270 \\ & = (\text{equals}), 290 \\ & = (\text{relational equals}), 55, 291 \\ & > (\text{greater than}), 55, 300 \\ & [], 319, 369 \\ & ^{(} (\text{exponent}), 48 \\ & [], 316 \\ & 10^{(} (10 \text{ raised to } n \text{ power}), 48, \\ & 337 \\ \end{split}$$

A

abs (absolute value), 49, 71, 175, 185, 267 addition (+), 267 ALL, 43, 232 ALL-, 77 ALL+, 77 ALPHA character, 22 ALPHA cursor, 22 alpha cursor, 22 ALPHA key, 21 ALPHA-lock, 22, 44 canceling, 22 setting, 22 and (Boolean), 69, 268 angle, 71, 175, 185, 269 expressed in degrees, 51 angle modes, 35 angle values, 35 Ans (last answer), 29, 30, 41, 269answer displaying, 19 storing to a variable, 41 APD. See Automatic Power Down ARC, 96, 98 arc(, 54, 269 argument. 25 Asm (assembly language program), 269 AsmComp (compile assembly language program), 226, 270 AsmPrgm (assembly language program), 226, 270

assembly language programs, 225assignment, 270 attached formulas executing, 164 resolving errors, 165 attached-formula list comparing. 163 creating, 162 editing elements, 166 aug(, 160, 184, 270 Automatic Power Down, 17 automatic regression equation storage, 191 AXES. 137 Axes editor, 137 field formats, 137 Axes(, 271 AxesOff. 84, 271 AxesOn, 84, 271

B b (binary), 271 backup battery, 16

BASE A-F (Hexadecimal) menu. 67 BASE BIT menu, 69 BASE BOOL (Boolean) menu, 68 BASE CONV (Conversion) menu, 68 BASE menu, 66 BASE TYPE menu, 67 base type symbol. 67 batteries, 2, 16-18 battery compartment, 16 BCKUP (memory backup), 237 Bin (binary), 35, 272 ▶Bin (to binary), 68, 272 binary integer, 271 binary number base, 35, 66 Boolean operators, 68, 268, 325, 328, 370 bound={-1E99,1E99}, 204 bounds. 204 BOX (GRAPH ZOOM menu). 14, 92, 93 Box (stat plot), 272 BOX (ZOOM menu), 208 break (program), 222 BREAK menu, 26

built-in constants, 58 built-in variables, 39, 45, 138 busy indicator, 26, 85

C CALC (Calculus) menu, 54 calculating derivatives, 7 calculation interrupting, 26 calculus functions, 54 CATALOG, 25, 38 Quick-Find Locator, 262

Quick-Find Locator, 262 CATLG (CATALOG), 43 CATLG-VARS (CATALOG Variables) menu, 43 changing Tl-86 settings, 39 CHAR (Character) menu, 45 CHAR GREEK menu, 46 CHAR INTL (International) menu, 46 CHAR MISC (Miscellaneous) menu, 46 characters, 19 alpha, 22 blue, 21, 22 case, 22 characters (continued) deleting. 23 entering, 21 second, 22 vellow. 21 check RAM screen, 230 CIRCL (circle), 105, 106 Circl(, 273 circles drawing. 106 CLDRW (clear drawing), 103, 105,273 clearing CUSTOM menu items. 45clearing ENTRY storage area, 29CILCD (clear LCD), 216, 273 ClrEnt (clear entry), 232, 273 ClTbl (clear table), 114, 216, 273cnorm (column norm), 183, 273 command line, 220 complements (binary numbers), 66 complex matrix, 180 Complex Number menu, 71 complex number modes, 35

complex number variables, 43 complex numbers, 29, 70 as list elements, 156 displaying as result, 5 entering, 20 in results, 70 separator, 70 using in expressions, 71 complex values, 48 concatenation (+), 274 cond (condition number), 183, 274coni (complex conjugate), 71. 175.185.275 connecting instructions, 235 CONS (constants), 43 CONS (Constants) menu. 58 CONS BLTIN (Built-In Constants) menu, 58 CONS EDIT menu, 60 consecutive entries, 26 Constant Memory feature, 17, 34 constants, 59 built-in, 58 defined. 58 name. 61 user-created, 58, 60

contrast

adjusting. 2.18 CONV (Conversions) menu, 62 CONV AREA menu, 63 CONV ENRGY (Energy) menu, 64 CONV FORCE menu, 64 CONV LNGTH (Length) menu, 63 CONV MASS menu. 64 CONV POWER menu, 64 CONV PRESS (Pressure) menu, 64 CONV SPEED menu, 64 CONV TEMP (Temperature) menu, 8, 63 CONV TIME menu. 63 CONV VOL (Volume) menu. 63 conversions ▶Bin, 272 Dec. 279 DMS. 51. 285 Frac, 52, 298 Hex, 303 ▶Oct. 327 ▶Pol. 336 ▶REAL, 156

conversions (continued) ▶Rec. 343 Sph, 360 Eq)St, 227 libvc. 160 St)Eq(, 227, 361 vc)li, 160 converting a value expressed as a rate. 65 converting Fahrenheit to Celsius, 8 converting units of measure, 61 CoordOff. 84, 275 CoordOn, 84, 275 copying variable value, 41 corr (correlation coefficient), 193 cos (cosine), 48, 186, 276 cos⁻¹ (arccosine), 48, 276 $\cosh(hyperbolic \ cosine), 51,$ 277 cosh⁻¹ (inverse hyperbolic cosine), 51, 277 CPLX (complex number variables), 43, 71 cross(.173.277

cSum((cumulative sum), 160, 278 current entry, 19 clearing, 23 current item. 38 cursor. 17.22 ALPHA, 22 alpha, 22 changing, 23 direction kevs. 23 entry, 22 free-moving, 128, 144, 205 full. 22 insert. 22 location, 19, 20, 21, 25 moving, 23 second. 22 selection. 38 trace, 90 curves drawing. 107 CUSTOM menu. 44 clearing items, 45 copying items, 44 Customer Support, 392 ▶Cvl (to cylindrical), 174, 278

CylV (cylindrical vector coordinate mode), *36*, *278*

D

d (decimal), 278 data type selection screen, 42 Dec (decimal number base mode), 278 Dec (decimal), 35, 65 Dec (to decimal), 279 decimal. 20 decimal mode, 34, 35, 65 fixed (012345678901), 35 floating. 35 decimal number, 278 decimal number base, 35 decimal point, 35 degree angle mode, 35, 75, 279 degree complex-number mode. 70degree entry (°), 279 degrees°. 51 degrees/minutes/seconds form. 51 DELc (delete column), 179 **DELET.** 60

DELf (delete function), 77 DELi (delete element), 170 DELr (delete row), 179 Deltalst((delta list), 160, 279 DelVar((delete variable), 219. 280 der1((first derivative), 54, 280 der2((second derivative), 54, 280 derivatives calculating, 7 det (determinant), 183, 281 DFLTS (defaults), 232 DifEq (differential equation mode), 35, 74, 239, 281 differential equation editor, 134 differential equation graphs, 74 displaying, 138 drawing, 145 mode, 35 differential equations changing to first order, 142 defining graph, 132 drawing solutions, 148 DrEau(. 287 editor. 134 EXPLR, 148

differential equations (continued) graphing, 132, 137, 139, 141. 142initial conditions editor, 136 mode. 144 Q'n equation variables, 135 setting axes, 137 setting graph format, 133 setting graphing mode, 132 solving. 139 tracing, 144 using EVAL, 150 window variables, 135 differentiation modes. 36 difTol (tolerance), 136 dim (dimension), 173, 184, 281 dimL (dimension of list), 159, 282 DirFld (direction field), 134, 282 Disp (display), 216, 283 DispG (display graph), 283 display, 17 display contrast adjusting, 17, 18 displaying a menu. 31 DispT (display table), 284

DIST (distance), 96, 98 division (/), 284 division symbol, 3 DMS (to degrees/ minutes/seconds), 51, 285 dot(.173.285 dr/d0, 122 DRAW, 75, 88 DrawDot, 84, 285 DrawF (draw function), 103. 107,286 drawing circles. 106 differential equation graphs, 145 freehand points, lines, curves. 107 function, tangent line, inverse function, 107 line segments, 105 lines, 105, 106 parametric graphs, 130 points, 108 polar graphs, 122 drawing tools. 101 drawings clearing, 103

drawings (continued) recalling. 102 saving, 102 DrawLine, 84, 286 DrEqu((draw equation), 145, 287 DrInv (draw inverse), 103, 107, 287 DS<((decrement and skip), 219.288 DUPLICATE NAME menu, 241 dx/dt, 130 dxDer1 (exact differentiation). 36.75.288 dxNDer (numeric differentiation), 36, 75, 288 dv/dt. 130 dv/dx. 96, 99, 130

E

E (exponent), 48, 292 e^ (e raised to power), 288 editing equations, 205 editor menu, 33 eigVc (eigenvector), 183, 289 eigVl (eigenvalue), 183, 289 element matrix. 181 ellipsis at end of line, 19 in matrix row. 179 Else, 218, 306 e-mail address (TI Customer Support), 392 End, 218, 290, 297, 306 Eng (engineering notation), 34. 20,290 entry executing, 19 storing to. 29 entry cursor, 18, 22, 23 [ENTRY] key, 19 ENTRY Storage Area, 28, 29 EOS. See Equation Operating System Eq St((equation to string), 227, 290 eqn (equation) variable, 54, 203, 205 EQU (equation variables), 43 equal (=), 290 equal to (==), 291

equation entering. 203 evaluating, 122, 130 equation coefficients storing to a variable, 210 equation editor, 74, 75, 76, 80 entering a function, 77 graph styles, 77 parametric, 126 polar. 118 Equation Editor menu, 76 Equation Operating System, 397equation results storing to a variable, 210 equation solver, 40, 202 graph tools. 207 equation storage automatic regression, 191 equation variables, 40, 43, 78 equation-entry editor, 203 equations editing, 205 solving, 206 error conditions. 393 error menu. 31 error message, 27

error type, 27 errors. 17.27 correcting, 27 diagnosing, 27 from attached formulas. 165 EStep. 136 Euler method, 133, 291 eval, 52, 76, 88, 101, 122, 130, 150.291 evalF(. 54, 292 evaluating a function for x, 101 evaluating equations, 122, 130 e^x (constant e raised to a power), 48 exact differentiation, 36 EXIT (cancel data transmission). 241 exiting a menu. 6. 33 exp variable, 54, 203 EXPLR (explore), 148 exponent (E). 292 ExpR (exponential regression), 190.293 expression, 18, 20, 24, 25, 26, 30,48editing, 4 entering. 24

expression (continued) entering a list, 153 evaluating, 29, 30 using a complex number, 71 using a vector, 172 using matrix, 181

F

factorial (!), 50, 294 Fahrenheit converting to Celsius, 8 family of curves graphing, 86 in parametric graphs, 129 in polar graphs, 120 fcstx (forecast x). 294 fcsty (forecast y), 294 feature symbol, 39 field formats. 134 Fill. 184 Fill(, 160, 173, 295 Fix, 295 FldOff (slope and direction fields off), 134, 295 fldPic (field) variable, 138 Float, 35, 295

FMAX (function maximum), 96. 97fMax((function maximum), 54, 296FMIN (function minimum), 96. 97fMin((function minimum), 54, 296fnInt((function integral), 54, 296 FnOff (functions off), 296 FnOn (functions on), 297 For(, 218, 297 Form(. 161. 298 FORMT (graph format), 76 formulas attaching, 163 attaching to list name, 162 detaching, 166 fPart (fractional part), 49, 176, 186.298 Frac (to fractions), 52, 298 fraction, 3, 19 free-moving cursor, 84, 144 parametric graphs, 128 polar graphs. 119 fStat (frequency list), 189

full cursor. 22 Func (function mode), 35, 74, 239,299 function graphs, 73, 74 mode. 35 functions, 25, 38 deleting, 77 deselecting, 13 drawing, 107 entering. 25 entering in the equation editor, 76, 77, 78 evaluating. 101 kevboard, 48 plotting, 11 tracing, 11 using with lists, 5, 161

G

gcd((greatest common denominator), *52, 299* GDB (graph database), *43* GDB variable, *102* Get(, *299* getKy (get key), *216, 300* key code diagram, *217* GOTO. 26, 27, 300 Goto (PRGM CTL menu), 219. 224 graph, 75 defining, 74 displaying, 85 family of curves, 86 interrupting, 26 modifying, 85 pausing, 85 shading, 104 stopping, 85 GRAPH (Solver menu), 206 graph database (GDB), 102 recalling, 76 GRAPH DRAW menu, 75, 103, 122, 145 graph format differential equations, 133, 137 parametric graphs, 128 polar graphs, 119 screen, 76 setting, 83 GRAPH LINK. 235 GRAPH MATH menu, 75, 95, 122,130

GRAPH MATH operations effect of other settings. 96 using f(x), DIST, or ARC, 98 using dy/dx or TANLN, 99 using ISECT, 100 using ROOT, FMIN, FMAX, or INFLC, 97 using YICPT, 100 GRAPH menu, 27, 31, 75, 88, 117.126.133 graph modes, 35 setting, 74 differential equations, 144 function. parametric, 126 polar, 35, 117 graph screen, 75 setting window variables, 81 graph screen dimensions, 75 graph styles, 79 changing, 10 GrStl(. 302 setting, 79 graph tools in differential equation graphs. 144 in equation solver, 207

graph tools (continued) in parametric graphs. 128 in polar graphs, 119 graph zoom defining custom, 93 defining screen, 92 setting zoom factors, 93 Smart Graph, 94 zooming in, 92, 93 zooming out, 92, 93 GRAPH ZOOM menu, 75, 91, 147 graphing accuracy, 89 greater than (>). 300 greater than or equal to (\geq) , 301 grid points, 84 GridOff. 84. 301 GridOn, 84, 302 GrStl((graph style), 220, 302 Guess, 204 in interactive solver editor. 205

H

h (hexadecimal), *302* Hex (hexadecimal), *35*, *302* Hex (to hexadecimal), 68, 303
hexadecimal characters menu, 67
hexadecimal number base, 35, 66
Hist (histogram), 303
home screen, 17, 18, 23, 24, 26, 27
displaying entries and answers, 18
Horiz, 304
HORIZ (horizontal line), 105, 106
hyperbolic functions, 51

1

IAsk, 304 IAuto, 304 ident (identity), 184, 304 If, 218, 305, 306 imag (imaginary), 71, 175, 185, 306 imaginary portion of complex number, 71 implied multiplication, 397 INFLC (inflection point), 96, 97

INITC (initial conditions), 136 InpSt. 217. 307 Input (PRGM I/O menu), 216, 307 Input CBLGET, 216 INSc (insert column), 179 insert cursor, 22, 23 canceling, 23 INSf (insert function), 77 INSi (insert element), 170 INSr (insert row), 179 installing batteries, 16 instructions. 25 entering, 25 executing, 19 int (integer), 49, 176, 186, 308 integer part. 49 integer part of real numbers displaying, 6inter((interpolate), 309 interactive-solver editor, 204 bounds. 204 international letters, 46 Internet downloading programs, 235 e-mail address (TI Customer Support), 392

interpolate/extrapolate editor, 53 interrupting a calculation, 26 interrupting a graph, 26, 27 interrupting a program, 222 inverse, 309 inverse function drawing, 107 IPart (integer part), 6, 49, 176, 186, 309 IS>((increment and skip), 219, 310 ISECT (intersection), 96, 100 items on menus. 31

K

keys, 48 2nd, 21 ALPHA, 21 primary function, 19, 21, 22 key code diagram, 217

L LabelOff, *84*, *310* LabelOn, *84*, *310*

last answer, 28, 29 storing to variable, 3last entry, 26, 28 Lbl (label), 219, 224, 311 lcm((least common multiple), 52.311 LCust((load custom menu), 220, 311 left-rt, 202 length of segment of curve, 54 less than (<), 312 less than or equal to (\leq) , 312 LgstR (logistic regression), 190. 193.313 li>vc (list to vector), 160, 174, 316 LINE. 104, 105 Line(. 314 Lines drawing, 107 LINK menu, 236 LINK SEND menu, 236 LINK SEND85 menu, 239 linking instructions, 235 linking options, 234 LinR (linear regression), 190. 315

list, 29, 43, 52 as an argument. 161 attached formulas, 165 attaching formula, 162, 166 braces { }, 316 comparing, 163 creating, 157 deleting an element, 158 deleting from memory, 154 detaching formulas, 166 displaying list elements, 154 editing elements, 166 entering in an expression. 153inserting, 157 removing from list editor, 158 storing, 154 uses, 152 using with function, 5list editor, 31, 67, 156, 188 attaching formulas, 163, 164 removing a list, 158 List Editor menu, 156 list element complex. 156 deleting, 158

list element (continued) displaying, 155, 158 editing, 158 storing a value to, 155 list entry { }, 316 LIST menu. 152 list names, 43 LIST NAMES menu, 153, 189 LIST OPS menu, 159 ln (natural log), 48, 316 lngth (length of string), 227, 316 LnR (logarithmic regression), 190.317 log. 48. 318 low-battery message, 16, 18 lower menu, 32 LU((lower-upper), 183, 318

Μ

Macintosh linking to, 235 MATH, 75 MATH (Graph menu), 88 MATH ANGLE menu, 51 MATH HYP (Hyperbolic) menu, 51 MATH menu. 31, 49 MATH MISC (Miscellaneous) menu, 52 MATH NUM (Number) menu, 31, 49MATH PROB (Probability) menu, 50 mathematical functions, 48 using with lists, 161 with a matrix. 185 matrix, 29 brackets [], 180, 319 creating, 178, 180 defined. 178 deleting from memory, 180 displaying elements, rows, submatrices. 181 editing using STO>, 182 names, 43 using in expression, 181 using math functions, 185 Matrix Editor menu, 179 matrix entry [], 319 MATRX (matrix names), 43 MATRX (Matrix) menu, 178 MATRX CPLX (Complex) menu, 185

MATRX MATH menu. 183 MATRX NAMES menu, 178 MATRX OPS (Operations) menu, 184 max(, 49, 160, 319 maximum characters. 22 maxX, 193 maxY, 193 MBox. 319 Med (median). 193 MEM (clear memory), 232 MEM (Memory) menu, 29, 230 MEM RESET menu, 232 MEM DELET (Delete) menu. 231MEM FREE (available memorv). 230 memory, 16, 17, 22, 28, 29, 223 available, 230 deleting items, 231 resetting, 3, 232 memory backup initiating, 237 overwrite warning, 237 menus displaying. 31 exiting, 6

menus (continued) in editors. 33 keys, 32 lower, 32 removing. 6.33 selecting items. 32 upper, 33 menu map, 380 Menu(, 219, 320 min(. 49, 160, 320 minX, 193 minY, 193 mod(. 49. 320 mode settings, 19, 20, 70 changing, 34 displaying, 34 number base, 65 modulo, 49 mRAdd, 184 mRAdd(, 321 multiple entries retrieving. 29 multiplication (*), 321 multR((multiply row), 184, 322

Ν

n (statistical results variable). 193 natural log, 48 nCr (number of combinations), 50, 322 nDer((numerical derivative), 54, 323 negation symbol (-), 20 negative numbers entering, 19 norm. 173. 183. 323 Normal, 34, 324 not (Boolean), 66, 69, 325 not equal to (\neq) . 326 notation modes. 34 engineering, 34 normal, 34 scientific. 34 notation of displayed answers. 20 nPr (number of permutations), 50.326 number base. 65 designators, 65 ranges, 66

type, designating, 67 modes, 35 numbers entering, 19 numeric differentiation, 36 numerical derivative, 54

0

o, 326
Oct (octal), 35, 327
▶Oct (to octal), 327
octal integer, 326
octal number base, 35, 66
OneVa (OneVar), 189, 191, 327
operation
 second, 22
operator
 entering, 25
or (Boolean), 69, 328
order of operations, 56
order-of-evaluation rules, 20, 62
Outpt(, 217, 329
OVERW (overwrite), 241

Ρ

P2Reg (quadratic regression). 190, 330 P3Reg (cubic regression), 190, 331 P4Reg (quartic regression). 190, 332 panning, 90 Par, 74 Param (parametric mode), 35, 239. 333 parametric equation deleting, 127 graphing, 126 selecting and deselecting. 127 parametric graphs, 74 default graph style, 126 defining. 125 displaying, 128 drawing, 130 equation editor, 126 free-moving cursor. 128 graph format, 128 graph tools, 128

mode. 35, 126 tracing. 128 window variables, 127 Zoom, 129 parentheses, 20, 25, 56, 61, 397 pause, 26, 333 Pause (PRGM CTL menu), 219 pause indicator, 26 PC linking to, 235 PEN, 105 percent (%), 334 permutations of items, 50 pEval(. 52. 334 phone (TI Customer Support), 392pi. 59 PIC (picture names), 43 PIC variable entering, 76 storing graph, 102 pictures recalling, 102 saving, 102 pixel resolution for function graphs. 81 PlOff (plot off), 195, 334

PlOn (plot on), 195, 334 PLOT1. 195 Plot1(, 335 PLOT2, 195 Plot2(, 335 PLOT3. 195 Plot3(, 335 plotting functions, 9, 11 plotting statistical data, 194 points drawing, 108 turning on and off, 108 Pol (polar mode), 35, 74, 239, 336 Pol (to polar), 71, 174, 336 polar angle of complex number, 72polar complex (\angle), 336 polar complex mode, 35, 336 polar complex number form. 20.70 polar equation tracing, 120 polar graphs, 74, 84 default graph style, 118 defining, 117 displaying, 119

drawing. 122 equation editor, 118 free-moving cursor, 119 graph format, 119 graph tools. 119 polar graphs (continued) mode, 35 trace cursor, 120, 121 tracing, 120 window editor. 118 Zoom, 121 PolarC (polar complex mode), 35.336 PolarGC (polar graph coordinates), 84, 336 poly, 337 polynomial coefficient storing to a variable, 212 polynomial root storing to a variable, 212 polynomial root-finder, 211 polynomial value, 52 power of 10 (10[^]), 20, 34, 337 PRegC, 193 previous entries. 8re-executing, 19 retrieving, 28

reusing. 28 PRGM (program names), 43 PRGM CTL menu, 218 PRGM I/O (Input/Output) menu, 215PRGM menu, 214 prod (product), 52, 160, 338 program editor, 214 menus and screens, 215, 220 program flow, 56 programming assembly language, 225 calling a program, 224 copying a program, 225 creating programs, 214 defined, 214 deleting a program, 223 downloading assembly programs, 225 editing a program, 223 entering a command line, 220 getting started, 214 interrupting program, 222 running program, 221 using variables, 225 Prompt (PRGM I/O menu), 216. 338

prompts, 22 Eval x=.76Name=, 22, 39, 76 Rcl, 42 Sto, 212 PTCHG. 105 PtChg(, 338 PTOFF, 105, 108 PtOff(, 338 PTON. 105. 108 PtOn(, 338 PwrR (power regression), 190, 339PxChg(. 103, 340 PxOff(, 103, 340 PxOn(, 103, 340 PxTest(. 103. 340

Q

Q'n equation variables, 135 Qrtl1, 193 Qrtl3, 193 Quick Zoom, 91 in parametric graphing, 129 in polar graphing, 120 Quick-Find Locator (A to Z Reference), *262*

R

r (radian entry), 341 rAdd. 184 rAdd(. 340 Radian (angle mode), 35 radian angle mode, 75, 341 radian complex-number mode, 70radian entry (r), 341 rand (random), 50, 341 randBin((random binomial), 50.341 randInt((random integer), 50. 342randM((random matrix), 184, 342randNorm((random normal), 50, 342 random number, 50 RCGDB (recall graph database), 76, 88, 343 RcPic (recall picture), 76, 102, 343

RCPIC menu. 76 REAL, 43, 175, 185, 343 ▶REAL (to real number), 156, 170,179 real number variables. 43 real numbers, 29 real portion of complex number, 71 ▶Rec (to rectangular), 71, 174, 343recalling variable values, 18, 42 receiving transmitted data, 241 rectangular complex mode, 35 rectangular complex numbers. 70rectangular complex-number form. 20 rectangular graph, 84 rectangular vector coordinates, 36RectC (rectangular complex). 35.344RectGC (rectangular graph coordinates), 84, 344 RectV (rectangular vector coordinate mode). 36, 344 RECV (LINK menu), 236

RECV (LINK SND85 menu), 240 redefining user-created constants, 60 ref (row echelon form), 184, 344regression models, 191 relational functions, 55, 56 RENAM (rename), 241 Repeat (PRGM CTL menu), 218.345 replacing batteries, 16 resetting memory, 232 result, 20, 24 result of last expression, 26 Return (PRGM CTL menu), 219, 345RK (Runge-Kutta) method, 133, 345rnorm (row norm), 183, 346 ROOT, 96, 97 $x\sqrt{.346}$ root-finder. 211 RotL (rotate left), 69, 347 RotR (rotate right), 69, 347 round(. 49, 176, 348 row of matrix, 181

rref (reduced row echelon), 184, 348 rSwap((row swap), 184, 348 running a program, 221

S

Scatter (stat plot type). 349 Sci (scientific notation), 20, 34, 349scrolling, 19 seed value, 50 SELCT. 112 SELECT, 77 Select(, 161, 350 selection cursor. 38 SEND (LINK menu), 236 SEND WIND screen, 238 Send(, 216, 350 separator, 70 seq((sequence), 52, 160, 351 SeqG (sequential graphing), 84, 351 series of instructions displaying, 18 SetLE, 159 SetLEdit, 161, 351

setting graph format, 83 setting graph style, 80 Shade(, 103, 104, 352 shading pattern. 104 resolution, 104 shading patterns, 80 ShftL (shift left), 69, 353 ShftR (shift right), 69, 353 ShwSt (show string), 354 sign, 49, 354 SimulG (simultaneous graphing), 84, 354 SIMULT ENTRY menu. 208 SIMULT order screen, 208 SIMULT RESULT menu, 209 simult(, 210, 354 simultaneous equation solver, 208 sin (sine), 48, 186, 355 sin⁻¹ (arcsine), 48, 355 sine calculating, 3 sinh (hyperbolic sine), 51, 356 sinh⁻¹ (inverse hyperbolic sine). 51.356

SinR (sinusoidal regression). 190.193.357 SKIP, 241 SlpFld (slope field), 134, 358 Smart Graph. 86 drawing tools, 102 in GRAPH MATH, 95 in Graph Zoom, 94 SND85 (LINK menu), 236 solution method formats. 133 solutions drawing, 148 SOLVE. 205 solver graph. 207 Solver menu, 206 Solver ZOOM menu, 208 Solver(. 358 solving differential equations, 139solving for unknown variable, 206 sortA. 159. 359 sortD, 159, 359 Sortx, 160, 359 Sortv. 160. 359 ▶Sph (to spherical), 174, 360

SphereV (spherical vector coordinate mode), 36, 360 square (2), 360 square root $(\sqrt{}), 7, 360$ St Eq (string to equation), 227. 361STAT (statistical result variables), 43 STAT CALC (Calculations) menu. 189 STAT menu, 188 Stat Plot changing on/off status, 81 setting up. 195 turning on and off, 195 STAT PLOT menu, 195 STAT PLOT status screen, 194 STAT VARS (Statistical Variables) menu, 192 statistical analysis, 188 results, 192 statistical data entering, 189 plotting, 194, 195 STGDB (store graph database). 76.88.361 STOa, 210

STOb, 210 Stop. 219. 362 Store, 18 store symbol, 22 store to variable (\rightarrow). 362 storing a graph display, 102 storing data, 39 storing equation coefficients, 210 storing equation results. 210 STOx, 210 STPIC (store picture), 76, 88, 362STPIC menu. 76 StReg (store regression equation), 190, 362 string. 29 concatenating. 226 creating, 226 defined, 226 storing. 226, 227 string entry, 363 STRNG (string variables), 43 STRNG (String) menu, 227 STYLE, 77 sub((subset of string), 227, 363 submatrix

displaying, 181 subroutines, 224 subtraction (-), 363 sum, 52, 160, 364 sum of elements of list, 52 Sx (statistical result variable), 193 syntax error, 27 syntax of function, 25 syntax of instruction, 25

Ţ

T (transpose), 367 table, 110 clearing, 114 displaying, 110 navigating, 111 setting up, 113 setup editor, 113 TABLE menu, 110 Table menus, 112 table setup editor, 113 tan (tangent), 48, 364 tan⁻¹ (arctangent), 48, 365 tangent line drawing, 107 tanh (hyperbolic tangent), 51. 365 tanh⁻¹ (inverse hyperbolic tangent), 51, 365 TANLN (tangent line), 96, 99 TanLn(, 103, 107, 366 TBLST (table setup editor), 112, 113 TEST menu, 55 TEXT. 105 Text(, 366 Then, 218, 305, 306 TI-GRAPH LINK. 235 tMax. 127. 136 tMin, 127, 136 TOL (Tolerance Editor), 398 tPlot. 136 **TRACE**. 88 TRACE (cursor), 75 Trace (Graph menu), 367 TRACE (Solver menu), 207 trace cursor, 75, 90, 144, 205 in parametric graphing, 128 in polar graphing, 120 moving, 90, 121, 129 panning, 90 Quick Zoom, 91

stopping and resuming, 91 tracing a function, 11 transmitting data, 234, 240 error conditions, 242 insufficient memory, 242 transmitting data (continued) repeating to several devices, 242 selecting variables, 238 window variables, 239 transpose (T), 367 tStep, 127, 136, 138 turning off TI-86, 2, 17 turning on TI-86, 2, 17 TwoVa (TwoVar), 189, 368

U

unevaluated expression storing, 9, 40 units of measure converting, 61 unit-to-unit cable, 234, 235 unitV (unit vector), 173, 368 unknown variable solving for, 206 upper menu, 32 selecting an item, 33 user-created constants, 43, 58, 60 user-created zoom variables, 239

V

value, 24, 25, 29 variable. 21 classifying as data types, 42 copying, 41 creating, 39 deleting, 45 displaying, 41 in expressions, 4 in table screen, 111 names, 44 recalling, 42 storing data to, 39 storing results to, 3, 30 uppercase and lowercase names. 39 x variable, 77 y variable, 77 variable equations in a table. 114 VARS CPLX (complex variables) screen, 71

VARS EQU menu, 203 vc>li (vector to list), 160, 174, 369vector, 29 brackets [], 369 complex, 171, 180 creating, 170 defined, 168 deleting from memory, 170 displaying. 171 editing dimension and elements, 172 forms. 168 operations, 173 using in an expression, 172 with math functions, 176 vector coordinate modes, 36 vector editor, 168 Vector Editor menu, 170 vector entry [], 369 VECTR (vector names), 43 VECTR CPLX (Complex) menu, 175 VECTR MATH menu, 173 VECTR menu. 169 VECTR NAMES menu, 169

VECTR OPS (Operations) menu, 173 VERT (vertical line), 104, 106, 369

W

warranty information, 400, 402 While, 218, 369 WIND (Solver menu), 206 WIND (window variables), 43, 35, 75, 238 window editor, 75 polar, 118 window variables, 82 Δx and Δy , 83 changing, 12, 82 differential equations, 135 graph screen, 81

X

x variable, 77 XMIT (transmit), 237, 240 Xor (Boolean), 69, 370 xRes (resolution), 81 xScl (scale), 81 xStat (x-variable list), 189 xyline, 370

Y

y variable, 77 y(x)=, 75 YICPT (y-intercept), 96, 100 yScl (scale), 81 yStat (y-variable list), 189

Ζ

ZData, 371 ZDATA (GRAPH ZOOM menu), 92 ZDecm, 372 ZDECM (GRAPH ZOOM menu), 92 ZFACT (ZOOM FACTOR), 92, 208 ZFit, 129, 373 ZFIT (GRAPH ZOOM menu), 92 ZIn (zoom in), 973 ZIN (zoom in), 92, 208 ZINT, 374 ZINT (GRAPH ZOOM menu), 92 ZOOM, 14, 75, 88 custom, 93 parametric graphs, 129 polar graphs, 121 ZOOM operations, 147
zoom window variables storing and recalling, 95
ZOOMX (GRAPH ZOOM menu), 92
ZOOMY (GRAPH ZOOM menu), 92
ZOUT (zoom out), 92, 208, 375
ZPREV (zoom previous), 92, 375
ZRCL (GRAPH ZOOM menu), 92, 95
user-created zoom variables, 239 ZRcl (zoom recall), 376 ZSqr, 376 ZSQR (GRAPH ZOOM menu), 92 ZSTD (GRAPH ZOOM menu), 92 ZSTD (standard defaults), 208, 377 ZSTO (GRAPH ZOOM menu), 92, 95 ZTrig, 378 ZTRIG (GRAPH ZOOM menu), 92