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To All

Calculus I is taught at Portland Community College using a lecture/lab format.
The laboratory time is set aside for students to investigate the topics and practice
the skills that are covered during their lecture periods. This lab manual serves
as a guide for the laboratory component of the course.

HTML and PDF This manual has been released with several synchronous
versions that offer different features. The essential content of each version is the
same as for all others.

• A web version is available at http://spot.pcc.edu/math/clm, and this ver-
sion is recommended. The web version offers full walk-through solutions to
supplemental problems. More importantly, it offers interactive elements
and easier navigation than print versions.

• A pdf-for-print is available at http://spot.pcc.edu/math/clm/clm-print.

pdf. This version is designed to be printed, not read on a screen. To save
on printing expense, this version is mostly black-and-white, and only offers
short answers to the supplemental exercises (as opposed to full solutions).

• A “for-printing-with-color” pdf is available at http://spot.pcc.edu/math/

clm/clm-print-color.pdf. This version is like the above, except links and
graphs retain their color.

Copying Content The graphs and other images that appear in this manual
may be copied in various file formats using the html version. Below each image
are links to .png, .eps, .svg, .pdf, and .tex files that contain the image.
Similarly, tables can be copied from the html version and pasted into appli-
cations like MS Word. However, mathematical content within tables will not
always paste correctly without a little extra effort as described below.
Mathematical content can be copied from the html version. To copy math
content into MS Word, right-click or control-click over the math content, and
click to Show Math As MathML Code. Copy the resulting code, and Paste Special
into Word. In the Paste Special menu, paste it as Unformatted Text. To copy
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math content into LATEX source, right-click or control-click over the math content,
and click to Show Math As TeX Commands.

Accessibility The html version is intended to meet or exceed all web acces-
sibility standards. If you encounter an accessibility issue, please report it to the
editor.

• All graphs and images should have meaningful alt text that communicates
what a sighted person would see, without necessarily giving away anything
that is intended to be deduced from the image.

• All math content is rendered using MathJax. MathJax has a contextual
menu that can be accessed in several ways, depending on what operating
system and browser you are using. The most common way is to right-click
or control-click on some piece of math content.

• In the MathJax contextual menu, you may set options for triggering a
zoom effect on math content, and also by what factor the zoom will be.

• If you change the MathJax renderer to MathML, then a screen reader will
generally have success verbalizing the math content.

Tablets and Smartphones PreTeXt documents like this lab manual are
“mobile-friendly”. When you view the html version, the display adapts to
whatever screen size or window size you are using. A math teacher will al-
ways recommend that you do not study from the small screen on a phone, but
if it’s necessary, this manual gives you that option.

To the Student

The lab activities have been written under the presumption that students will
be working in groups and will be actively discussing the examples and problems
included in each activity. Many of the exercises and problems lend themselves
quite naturally to discussion. Some of the more algebraic problems are not so
much discussion problems as they are “practice and help” problems.
You do not need to fully understand an example before starting on the associated
problems. The intent is that your understanding of the material will grow while
you work on the problems.
While working through the lab activities, the students in a given group should
be working on the same activity at the same time. Sometimes this means an
individual student will have to go a little more slowly than he or she may like
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and sometimes it means an individual student will need to move on to the next
activity before he or she fully grasps the current activity.
Many instructors will want you to focus some of your energy on the way you write
your mathematics. It is important that you do not rush through the activities.
Write your solutions as if they are going to be graded; that way you will know
during lab time if you understand the proper way to write and organize your
work.
If your lab section meets more than once a week, you should not work on lab
activities between lab sections that occur during the same week. It is OK to work
on lab activities outside of class once the entire classroom time allotted for that
lab has passed.
Lab 8 on related rates uses a strategy for related rates exercises that your in-
structor may not use in lecture. It is a multi-step process that may take some
time to learn. We recommend that you read the examples from this lab be-
fore coming to lab. Too much lab time should not be spent silently reading to
yourself.
There are no written solutions for the lab activity problems. Between your group
mates, your instructor, and (if you have one) your lab assistant, you should know
whether or not you have the correct answers and proper writing strategies for
these problems.
Each lab has a section of supplementary exercises; these exercises are fully keyed
with solutions. The supplementary exercises are not simply copies of the prob-
lems in the lab activities. While some questions will look familiar, many others
will challenge you to apply the material covered in the lab to a new type of
problem. These questions are meant to supplement your textbook homework,
not replace your textbook homework.

To the Instructor

This version of the calculus lab manual is significantly different from versions
prior to 2012. The topics have been arranged in a developmental order. Because
of this, students who work each activity in the order they appear may not get
to all of the topics covered in a particular week.
Additionally, a few changes have been introduced with the release of the PreTeXt
version. The most notable changes are:

• The numbering scheme does not match the earlier numbering scheme. This
was a necessary consequence of converting to PreTeXt.

• The related rates lab has been mostly rewritten using dreds.

• An activity on logarithmic differentiation has been added.
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• The printed version only contains short answers to the supplemental ques-
tions rather than complete walk-through solutions. However, complete
solutions may still be found in the html version.

It is strongly recommended that you pick and choose what you consider to be the
most vital activities for a given week, and that you have your students work those
activities first. For some activities you might also want to have the students
only work selected problems in the activity. Students who complete the high
priority activities and problems can then go back and work the activities that
they initially skipped. There are also fully keyed problems in the supplementary
exercises that the students could work on both during lab time and outside of
class. (The full solutions are only in the html version.)
A suggested schedule for the labs is shown in the table below. Again, you should
choose what you feel to be the most relevant activities and problems for a given
week, and have the students work those activities and problems first.
(Students should consult their syllabus for their schedule.)

Table 0.0.1: Suggested Schedule

Week Labs (Lab Activities) Supplementary
Exercises

1 Velocity through
Limits

Supplement 1.4

2 Limits Laws through
Piecewise-Defined Functions

Supplement 2.14

3 Instantaneous Velocity through
Derivative Units

Supplement 3.5

4 Graph Features through
Nondifferentiability

Supplement 4.7

5 Higher Order Derivatives through
Graphical Features from Derivatives

Supplement 4.7

6 Leibniz Notation through
Derivative Formulas and Function Behavior

Supplement 5.12

7 Introduction to the Chain Rule through
Chain Rule with Leibniz Notation

Supplement 6.5

8 General Implicit Differentiation through
Logarithmic Differentiation

Supplement 7.4

9, 10 Introduction to Related Rates† through
Making Graphs

Supplement 8.3,
Supplement 9.8

† Students should read the related rates examples before coming to lab.



Contents

Acknowledgements v

To All vii

To the Student viii

To the Instructor ix

1 Rates Of Change 1
1.1 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Secant Line to a Curve . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 The Difference Quotient . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Limits and Continuity 11
2.1 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Limits Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Indeterminate Limits . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Limits at Infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Limits at Infinity Tending to Zero . . . . . . . . . . . . . . . . . . 19
2.6 Ratios of Infinities . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 Non-existent Limits . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.8 Vertical Asymptotes . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.9 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.10 Discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.11 Continuity on an Interval . . . . . . . . . . . . . . . . . . . . . . 27

xi



xii CONTENTS

2.12 Discontinuous Formulas . . . . . . . . . . . . . . . . . . . . . . . 29
2.13 Piecewise-Defined Functions . . . . . . . . . . . . . . . . . . . . . 30
2.14 Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Introduction to the First Derivative 35
3.1 Instantaneous Velocity . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Tangent Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 The First Derivative . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Derivative Units . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Functions, Derivatives, Antiderivatives 45
4.1 Graph Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Graphical Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Nondifferentiability . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Higher Order Derivatives . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Antiderivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6 Graph Features from Derivatives . . . . . . . . . . . . . . . . . . 60
4.7 Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Derivative Formulas 73
5.1 Leibniz Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 The Derivative Operator . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 The Power Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 The Constant Factor Rule . . . . . . . . . . . . . . . . . . . . . . 75
5.5 The Constant Divisor Rule . . . . . . . . . . . . . . . . . . . . . . 76
5.6 The Sum and Difference Rules . . . . . . . . . . . . . . . . . . . . 77
5.7 The Product Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.8 The Quotient Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.9 Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.10 Product, Quotient Rules Together . . . . . . . . . . . . . . . . . . 82
5.11 Derivative Formulas and Function Behavior . . . . . . . . . . . . 83
5.12 Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



CONTENTS xiii

6 The Chain Rule 91
6.1 Introduction to the Chain Rule . . . . . . . . . . . . . . . . . . . 91
6.2 Order to Apply Rules . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3 Not Simplifying First . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.4 Chain Rule with Leibniz Notation . . . . . . . . . . . . . . . . . . 96
6.5 Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Implicit Differentiation 101
7.1 General Implicit Differentiation . . . . . . . . . . . . . . . . . . . 101
7.2 Derivatives of Inverse Functions . . . . . . . . . . . . . . . . . . . 104
7.3 Logarithmic Differentiation . . . . . . . . . . . . . . . . . . . . . 105
7.4 Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8 Related Rates 109
8.1 Introduction to Related Rates . . . . . . . . . . . . . . . . . . . . 109
8.2 Diagrams for Related Rates . . . . . . . . . . . . . . . . . . . . . 114
8.3 Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9 Critical Numbers and Graphing 121
9.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.2 Local Extrema . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.3 Formal ID of Critical Numbers . . . . . . . . . . . . . . . . . . . 124
9.4 Sign Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
9.5 Inflection Points . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.6 End Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.7 Making Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.8 Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A Limit Laws 139

B Derivative Formulas 142

C Some Useful Rules of Algebra 144



xiv CONTENTS

D Units of Measure 145

E Solutions to Supplemental Exercises 148



Lab 1

Rates Of Change

1.1 Velocity

Motion is frequently modeled using calculus. A building block for this applica-
tion is the concept of average velocity. Average velocity is defined to be net
displacement divided by elapsed time. More precisely,
Definition 1.1.1 (Average Velocity). If p is a position function for something
moving along a numbered line, then we define the average velocity over the
time interval [t0, t1] to be:

p(t1)− p(t0)

t1 − t0
.

Exercises

According to simplified Newtonian physics, if an object is dropped from an
elevation1 of 200 meters (m) and allowed to free fall to the ground, then the
elevation of the object is given by the position function

p(t) = 200m − (4.9m/s2) t2

where t is the amount of time that has passed since the object was dropped.
(The “200 m” in the formula represents the elevation from which the object was
dropped, and the “4.9 m

s2 ” represents one half of the acceleration due to gravity
near the surface of Earth.)

Calculate p(3 s) and p(5 s). Make sure that you include the units specified
in the formula for p(t), and that you replace t with, respectively, 3 s and
5 s. Make sure that you simplify the units, as well as the numerical part
of the function value.

1.

1If you encounter an unfamiliar unit of measure while reading this lab manual, see Ap-
pendix D.

1
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Calculate p(5 s)−p(3 s)
5 s−3 s ; include units while making the calculation. Note

that you already calculated p(3 s) and p(5 s) in Exercise 1. What does
the result tell you in the context of this problem?

Remark 1.1.2 (Units in formulas). Thus far we have used a formula
where every number that appears in the formula comes with its real
world unit (p(t) = 200m − (4.9m/s2) t2). A formula like this allows you
to calculate p(5 s) or p(5min) as you please, as long as you track the
units and reduce ratios appropriately.
However, all those units in the original formula might distract you from
new calculus topics. We could just write p(t) = 200− 4.9t2, but if we do
so, we have to specify that t is in seconds and p(t) is in meters. With this
formula, we can calculate something like p(5), but we need to recognize
that in context, the 5 means that 5 seconds have passed. And when we
arrive at the result, p(5) = 77.5, we need to realize that the position is
77.5 meters.
For the remainder of this lab manual, formulas will be written in this
second way, without explicit units. Each variable will be specified with
what unit it is intended to be measured in. To continue the current block
of exercises, we redefine

p(t) = 200− 4.9t2,

where t is in s, and p(t) is in m.

2.

Use Definition 1.1.1 to find a formula for the average velocity of this
object over the general time interval [t0, t1]. The first couple of lines
of this process are shown below. Copy these lines onto your paper and
continue the simplification process.

p(t1)− p(t0)

t1 − t0
=

[200− 4.9t21]− [200− 4.9t20]

t1 − t0

=
200− 4.9t21 − 200 + 4.9t20

t1 − t0

=
−4.9t21 + 4.9t20

t1 − t0
= · · ·

3.

Check the formula you derived in Exercise 3 using t0 = 3 and t1 = 5;
that is, compare the value generated by the formula to that you found
in Exercise 2.

4.
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Now explore some average velocities in tabular form.

Using the formula found in Exer-
cise 3, replace t0 with 3 but leave
t1 as a variable; simplify the re-
sult. Then copy Table 1.1.3 onto
your paper and fill in the missing
entries.

t1 (s) p(t1)−p(3)
t1−3

(m
s )

2.9
2.99
2.999
3.001
3.01
3.1

Table 1.1.3: Values of p(t1)−p(3)
t1−3

5.

As the value of t1 gets closer to 3, the values in the y-column of Table 1.1.3
appear to be converging on a single quantity; what is this quantity?
What does it mean in the context of this problem?

6.

1.2 Secant Line to a Curve

One of the building blocks in differential calculus is the secant line to a curve.
The only requirement for a line to be considered a secant line to a curve is that
the line must intersect the curve in at least two points.
In Figure 1.2.1, we see a secant line to the curve y = f(x) through the points
(0, 3) and (4,−5). Verify that the slope of this line is −2.

The formula for f is f(x) = 3+2x−x2. We
can use this formula to come up with a gen-
eralized formula for the slope of secant lines
to this curve. Specifically, the slope of the
line connecting the point (x0, f(x0)) to the
point (x1, f(x1)) is derived in the following
example.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Figure 1.2.1: A secant line to
y = f(x) = 3 + 2x− x2
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Example 1.2.2 (Calculating Secant Slope).

msec =
f(x1)− f(x0)

x1 − x0

=
(3 + 2x1 − x2

1)− (3 + 2x0 − x2
0)

x1 − x0

=
3 + 2x1 − x2

1 − 3− 2x0 + x2
0

x1 − x0

=
(2x1 − 2x0)− (x2

1 − x2
0)

x1 − x0

=
2 (x1 − x0)− (x1 + x0) (x1 − x0)

x1 − x0

=
[2− (x1 + x0)] (x1 − x0)

x1 − x0

= 2− x1 − x0 for x1 ̸= x0

We can check our formula using the line in Figure 1.2.1. If we let x0 = 0 and
x1 = 4 then our simplified slope formula gives us: 2−x1−x0 = 2− 4− 0, which
simplifies to −2 as we expected.

Exercises

Let g(x) = x2 − 5.

Following Example 1.2.2, find a formula for the slope of the secant line
connecting the points (x0, g(x0)) and (x1, g(x1)).

1.

Check your slope formula using the two points indicated in Figure 1.2.3.

That is, use the graph to find the slope
between the two points and then use your
formula to find the slope; make sure that
the two values agree!

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Figure 1.2.3:
y = g(x) = x2 − 5 and
a secant line

2.
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1.3 The Difference Quotient

While it’s easy to see that the formula f(x1)−f(x0)
x1−x0

gives the slope of the line
connecting two points on the function f , the resultant expression can at times
be awkward to work with. We actually already saw that in Example 1.2.2.
The algebra associated with secant lines (and average velocities) can sometimes
be simplified if we designate the variable h to be the run between the two points
(or the length of the time interval). With this designation we have x1 − x0 = h
which gives us x1 = x0 + h. Making these substitutions we get (1.3.1). The
expression on the right side of (1.3.1) is called the difference quotient for f .

f(x1)− f(x0)

x1 − x0

=
f(x0 + h)− f(x0)

h
(1.3.1)

Let’s revisit the function f(x) = 3+2x−x2 from Example 1.2.2. The difference
quotient for this function is derived in Example 1.3.1.

Example 1.3.1 (Calculating a Difference Quotient).

f(x0 + h)− f(x0)

h
=

[
3 + 2 (x0 + h)− (x0 + h)2

]
− [3 + 2x0 − x2

0]

h

=
3 + 2x0 + 2h− x2

0 − 2x0h− h2 − 3− 2x0 + x2
0

h

=
2h− 2x0h− h2

h

=
h (2− 2x0 − h)

h
= 2− 2x0 − h for h ̸= 0

Please notice that all of the terms without a factor of h subtracted to zero.
Please notice, too, that we avoided all of the tricky factoring that appeared in
Example 1.2.2!

For simplicity’s sake, we generally drop the variable subscript when applying the
difference quotient. So for future reference we will define the difference quotient
as follows:

Definition 1.3.2 (The Difference Quotient). The difference quotient for the
function y = f(x) is the expression f(x+h)−f(x)

h
.

Exercises

Completely simplify the difference quotient for each of the following functions.
Please note that the template for the difference quotient needs to be adapted
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to the function name and independent variable in each given equation. For
example, the difference quotient for the function in Exercise 1 is v(t+h)−v(t)

h
.

Please make sure that you lay out your work in a manner consistent with the
way the work is shown in Example 1.3.1 (excluding the subscripts, of course).

v(t) = 2.5t2 − 7.5t1. g(x) = 3− 7x2.

w(x) =
3

x+ 2
3.

Suppose that an object is tossed directly upward in the air in such a way that
the elevation of the object (measured in ft) is given by the function f defined by
f(t) = 40 + 40t − 16t2 where t is the amount of time that has passed since the
object was tossed (measured in s).

Simplify the difference quotient for f .4.
Ignoring the unit, use the difference quotient to determine the average
velocity over the interval [1.6, 2.8].

5.

Calculate f(1.6) and f(2.8). What unit is associated with the values of
these expressions? What is the contextual significance of these values?

6.

Use the expression f(2.8)−f(1.6)
2.8−1.6

and the answers to Exercise 6 to verify the
value you found in Exercise 5. What unit is associated with the values
of this expression? What is the contextual significance of this value?

7.

Ignoring the unit, use the difference quotient to determine the average
velocity over the interval [0.4, 2.4].

8.

Moose and squirrel were having casual conversation when suddenly, without
any apparent provocation, Boris Badenov launched anti-moose missile in their
direction. Fortunately, squirrel had ability to fly as well as great knowledge of
missile technology, and he was able to disarm missile well before it hit ground.
The elevation (ft) of the tip of the missile t seconds after it was launched is given
by the function h(t) = −16t2 + 294.4t+ 15.

Calculate the value of h(12). What unit is associated with this value?
What does the value tell you about the flight of the missile?

9.

Calculate the value of h(10)−h(0)
10

. What unit is associated with this value?
What does this value tell you about the flight of the missile?

10.

The velocity ( ft
s ) function for the missile is v(t) = −32t+294.4. Calculate

the value of v(10)−v(0)
10

. What unit is associated with this value? What
does this value tell you about the flight of the missile?

11.
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Timmy lived a long life in the 19th century. When Timmy was seven he found
a rock that weighed exactly half a stone. (Timmy lived in jolly old England,
don’t you know.) That rock sat on Timmy’s window sill for the next 80 years
and wouldn’t you know the weight of that rock did not change even one smidge
the entire time. In fact, the weight function for this rock was w(t) = 0.5 where
w(t) was the weight of the rock (stones) and t was the number of years that had
passed since that day Timmy brought the rock home.

What was the average rate of change in the weight of the rock over the
80 years it sat on Timmy’s window sill?

12.

Ignoring the unit, simplify the expression w(t1)−w(t0)
t1−t0

. Does the result
make sense in the context of this problem?

13.

Showing each step in the process and ignoring the unit, simplify the
difference quotient for w. Does the result make sense in the context of
this problem?

14.

Truth be told, there was one day in 1842 when Timmy’s mischievous son Nigel
took that rock outside and chucked it into the air. The velocity of the rock ( ft

s )
was given by v(t) = 60−32t where t was the number of seconds that had passed
since Nigel chucked the rock.

What, including unit, are the values of v(0), v(1), and v(2) and what
do these values tell you in the context of this problem? Don’t just write
that the values tell you the velocity at certain times; explain what the
velocity values tell you about the motion of the rock.

15.

Ignoring the unit, simplify the difference quotient for v.16.

What is the unit for the difference quotient for v? What does the value
of the difference quotient (including unit) tell you in the context of this
problem?

17.

Suppose that a vat was undergoing a controlled drain and that the amount of
fluid left in the vat (gal) was given by the formula V (t) = 100− 2t3/2 where t is
the number of minutes that had passed since the draining process began.

What, including unit, is the value of V (4) and what does that value tell
you in the context of this problem?

18.

Ignoring the unit, write down the formula you get for the difference
quotient of V when t = 4.

19.
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Copy Table 1.3.3 onto your paper and fill in the missing values.

Look for a pattern in the output
and write down enough digits for
each entry so that the pattern is
clearly illustrated; the first two
entries in the output column have
been given to help you understand
what is meant by this direction.

h y

−0.1 −5.962 . . .

−0.01 −5.9962 . . .

−0.001

0.001

0.01

0.1

Table 1.3.3: y = V (4+h)−V (4)
h

20.

What is the unit for the y values in Table 1.3.3? What do these values
(with their unit) tell you in the context of this problem?

21.

As the value of h gets closer to 0, the values in the y column of Table 1.3.3
appear to be converging to a single number; what is this number and
what do you think that value (with its unit) tells you in the context of
this problem?

22.
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1.4 Supplement

Exercises

The function z shown in Figure 1.4.1 was generated by the formula z(x) =
2 + 4x− x2.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

h z(4+h)−z(4)
h

−0.1 −3.9

−0.01

−0.001

0.001

0.01

0.1

Figure 1.4.1: y = z(x) = 2+4x−x2 Table 1.4.2: z(4+h)−z(4)
h

Simplify the difference quotient for z.1.

Use the graph to find the slope of the secant line to z between the points
where x = −1 and x = 2. Check your simplified difference quotient for
z by using it to find the slope of the same secant line.

2.

Replace x with 4 in your difference quotient formula and simplify the
result. Then copy Table 1.4.2 onto your paper and fill in the missing
values.

3.

As the value of h gets closer to 0, the values in the y column of Table 1.4.2
appear to be converging on a single number; what is this number?

4.

The value found in Exercise 4 is called the slope of the tangent line to
z at 4. Draw onto Figure 1.4.1 the line that passes through the point
(4, 2) with this slope. The line you just drew is called the tangent line
to z at 4.

5.

Find the difference quotient for each function showing all relevant steps in an
organized manner.
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f(x) = 3− 7x6. g(x) =
7

x+ 4
7.

z(x) = π8. s(t) = t3 − t− 99.

k(t) =
(t− 8)2

t
10.

Suppose that an object is tossed directly upward in the air in such a way that
the elevation of the object (measured in ft) is given by the function s(t) =
150 + 60t− 16t2 where t is the amount of time that has passed since the object
was tossed (measure in seconds).

Find the difference quotient for s.11.

Use the difference quotient to determine the average velocity of the object
over the interval [4, 4.2] and then verify the value by calculating s(4.2)−s(4)

4.2−4
.

12.

Several applied functions are given below. In each case, find the indicated quan-
tity (including unit) and interpret the value in the context of the application.

The velocity, v, of a roller coaster (in ft
s ) is given by

v(t) = −100 sin
(
πt

15

)
where t is the amount of time (s) that has passed since the coaster topped
the first hill. Find and interpret v(7.5)−v(0)

7.5−0
.

13.

The elevation of a ping pong ball relative to the table top (in m) is
given by the function h(t) = 1.1

∣∣cos
(
2πt
3

)∣∣ where t is the amount of time
(s) that has passed since the ball went into play. Find and interpret
h(3)−h(1.5)

3−1.5
.

14.

The period of a pendulum (s) is given by P (x) = 6
x+1

where x is the
number of swings the pendulum has made. Find and interpret P (29)−P (1)

29−1
.

15.

The acceleration of a rocket (mph
s ) is given by a(t) = 0.02+0.13t where t

is the amount of time (s) that has passed since lift-off. Find and interpret
a(120)−a(60)

120−60
.

16.



Lab 2

Limits and Continuity

2.1 Limits

While working Exercises 1.3.1.18–22 from Activity 1.3 you completed Table 1.3.3.
In the context of that problem the difference quotient being evaluated returned
the average rate of change in the volume of fluid remaining in a vat between
times t = 4 and t = 4 + h. As the elapsed time closes in on 0 this average rate
of change converges to −6. From that we deduce that the rate of change in the
volume 4 minutes into the draining process must have been 6 gal

min .
Please note that we could not deduce the rate of change 4 minutes into the
process by replacing h with 0; in fact, there are at least two things preventing
us from doing so. From a strictly mathematical perspective, we cannot replace
h with 0 because that would lead to division by zero in the difference quotient.
From a more physical perspective, replacing h with 0 would in essence stop the
clock. If time is frozen, so is the amount of fluid in the vat and the entire concept
of “rate of change” becomes moot.
It turns out that it is frequently more useful (not to mention interesting) to
explore the trend in a function as the input variable approaches a number rather
than the actual value of the function at that number. Mathematically we de-
scribe these trends using limits.
If we denote f(h) = V (4+h)−V (4)

h
to be the difference quotient in Table 1.3.3, then

we could describe the trend evidenced in the table by saying “the limit of f(h)
as h approaches zero is −6.” Please note that as h changes value, the value of
f(h) changes, not the value of the limit. The limit value is a fixed number to
which the value of f(h) converges. Symbolically we write lim

h→0
f(h) = −6.

Most of the time the value of a function at the number a and the limit of the
function as x approaches a are in fact the same number. When this occurs we say
that the function is continuous at a. We will explore the concept of continuity
more in depth at the end of the this lab, once we have a handle on the idea of

11
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limits. To help you better understand the concept of limit we need to have you
confront situations where the function value and limit value are not equal to
one another. Graphs can be useful for helping distinguish function values from
limit values, so that is the perspective you are going to use in the first couple of
problems in this lab.

Exercises

1. Several function values and limit values for the function in Figure 2.1.1 are
given below. You and your group mates should take turns reading the equations
aloud. Make sure that you read the symbols correctly, that’s part of what you
are learning! Also, discuss why the values are what they are and make sure that
you get help from your instructor to clear up any confusion.
f(−2) = 6, but lim

x→−2
f(x) = 3.

f(−4) is undefined, but lim
x→−4

f(x) = 2.

f(1) = −1, but lim
x→1

f(x) does not exist.

lim
x→1−

f(x)︸ ︷︷ ︸
the limit of f(x)

as x approaches 1

from the left

= −3, but lim
x→1+

f(x)︸ ︷︷ ︸
the limit of f(x)

as x approaches 1

from the right

= −1.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Figure 2.1.1: y = f(x)
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Copy each of the following expressions
onto your paper and either state the
value or state that the value is un-
defined or doesn’t exist. Make sure
that when discussing the values you
use proper terminology. All expres-
sions are in reference to the function
g shown in Figure 2.1.2. −6 −4 −2 2 4 6

−6

−4

−2

2

4

6

t

y

Figure 2.1.2: y = g(t)

g(5)2. lim
t→5

g(t)3. g(3)4.

lim
t→3−

g(t)5. lim
t→3+

g(t)6. lim
t→3

g(t)7.

g(2)8. lim
t→2

g(t)9. g(−2)10.

lim
t→−2−

g(t)11. lim
t→−2+

g(t)12. lim
t→−2

g(t)13.

Values of the function f , where f(x) = 3x2−16x+5
2x2−13x+15

, are shown in Table 2.1.3, and
values of the function p, where p(t) =

√
t− 12, are shown in Table 2.1.4. These

questions are in reference to these functions.

x f(x)

4.99 2.0014

4.999 2.00014

4.9999 2.000014

5.0001 1.999986

5.001 1.99986

5.01 1.9986

t p(t)

20.9 2.98 . . .

20.99 2.998 . . .

20.999 2.9998 . . .

21.001 3.0002 . . .

21.01 3.002 . . .

21.1 3.02 . . .

Table 2.1.3: f(x) = 3x2−16x+5
2x2−13x+15

Table 2.1.4: p(t) =
√
t− 12

What is the value of f(5)?14.

What is the value of lim
x→5

3x2 − 16x+ 5

2x2 − 13x+ 15
?15.
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What is the value of p(21)?16.

What is the value of lim
t→21

√
t− 12?17.

Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce each
of the following limit values. Make sure that you include table numbers, table
captions, and meaningful column headings. Make sure that your input values
follow patterns similar to those used in Tables 2.1.3 and 2.1.4. Make sure that
you round your output values in such a way that a clear and compelling pattern
in the output is clearly demonstrated by your stated values. Make sure that you
state the limit value!

lim
t→6

t2 − 10t+ 24

t− 6
18. lim

x→−1+

sin(x+ 1)

3x+ 3
19.

lim
h→0−

h

4−
√
16− h

20.

2.2 Limits Laws

When proving the value of a limit we frequently rely upon laws that are easy to
prove using the technical definitions of limit. These laws can be found in Ap-
pendix A. The first of these type laws are called replacement laws. Replacement
laws allow us to replace limit expressions with the actual values of the limits.

Exercises

The value of each of the following limits can be established using one of the
replacement laws. Copy each limit expression onto your own paper, state the
value of the limit (e.g. lim

x→9
5 = 5), and state the replacement law (by number)

that establishes the value of the limit.

lim
t→π

t1. lim
x→14

232. lim
x→14

x3.

4. (Applying Limit Laws) This exercise is fully worked out to serve as an
example.
Find limx→7 (4x

2 + 3).

lim
x→7

(
4x2 + 3

)
= lim

x→7

(
4x2
)
+ lim

x→7
3 Limit Law A1
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= 4 lim
x→7

x2 + lim
x→7

3 Limit Law A3

= 4
(

lim
x→7

x
)2

+ lim
x→7

3 Limit Law A6

= 4 · 72 + 3 Limit Law R1,R2
= 199

The algebraic limit laws allow us to replace limit expressions with equivalent
limit expressions. When applying limit laws our first goal is to come up with an
expression in which every limit in the expression can be replaced with its value
based upon one of the replacement laws. This process is shown in Exercise 4.
Please note that all replacement laws are saved for the second to last step and
that each replacement is explicitly shown. Please note also that each limit law
used is referenced by number.
Use the limit laws to establish the value of each of the following limits. Make
sure that you use the step-by-step, vertical format shown in Exercise 4. Make
sure that you cite the limit laws used in each step. To help you get started, the
steps necessary in Exercise 5 are outlined as:

(a) Apply Limit Law A6

(b) Apply Limit Law A1

(c) Apply Limit Law A3

(d) Apply Limit Law R1 and Limit Law R2

lim
t→4

√
6t+ 15. lim

y→7

y + 3

y −
√
y + 9

6. lim
x→π

(x cos(x))7.

2.3 Indeterminate Limits

Many limits have the form 0
0

which means the expressions in both the numerator
and denominator limit to zero (e.g.lim

x→3

2x−6
x−3

). The form 0
0

is called indetermi-
nate because we do not know the value of the limit (or even if it exists) so long
as the limit has that form. When confronted with limits of form 0

0
we must first

manipulate the expression so that common factors causing the zeros in the nu-
merator and denominator are isolated. Limit law A7 can then be used to justify
eliminating the common factors and once they are gone we may proceed with
the application of the remaining limit laws. Examples 2.3.1 and 2.3.2 illustrate
this situation.
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Example 2.3.1.

lim
x→3

x2 − 8x+ 15

x− 3
= lim

x→3

(x− 5)(x− 3)

x− 3

= lim
x→3

(x− 5) Limit Law A7

= lim
x→3

x− lim
x→3

5 Limit Law A2

= 3− 5 Limit Law R1,R2
= −2

Note that the forms of the limits on either side of the first line are 0
0
, but the

form of the limit in the second line is no longer indeterminate. So at the second
line, we can begin applying limit laws.

Example 2.3.2.

lim
θ→0

1− cos(θ)
sin2(θ)

= lim
θ→0

(
1− cos(θ)

sin2(θ)
· 1 + cos(θ)
1 + cos(θ)

)
= lim

θ→0

1− cos2(θ)
sin2(θ) · (1 + cos(θ))

= lim
θ→0

sin2(θ)

sin2(θ) · (1 + cos(θ))

= lim
θ→0

1

1 + cos(θ) Limit Law A7

=
limθ→0 1

limθ→0 (1 + cos(θ)) Limit Law A5

=
limθ→0 1

limθ→0 1 + limθ→0 cos(θ) Limit Law A1

=
limθ→0 1

limθ→0 1 + cos(limθ→0 θ)
Limit Law A6

=
1

1 + cos(0) Limit Law R1,R2

=
1

2

The form of each limit above was 0
0

until the fourth line, where we were able to
begin applying limit laws.

As seen in Example 2.3.2, trigonometric identities can come into play while
trying to eliminate the form 0

0
. Elementary rules of logarithms can also play a

role in this process. Before you begin evaluating limits whose initial form is 0
0
,

you need to make sure that you recall some of these basic rules. That is the
purpose of Exercise 1.
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Exercises

1. Complete each of the following identities (over the real numbers). Make sure
that you check with your lecture instructor so that you know which of these
identities you are expected to memorize.
The following identities are valid for all values of x and y.

1− cos2(x) = tan2(x) =

sin(2x) = tan(2x) =
sin(x+ y) = cos(x+ y) =

sin
(x
2

)
= cos

(x
2

)
=

There are three versions of the following identity; write them all.

cos(2x) = cos(2x) = cos(2x) =

The following identities are valid for all positive values of x and y and all values
of n.

ln(xy) = ln
(
x

y

)
=

ln(xn) = ln(en) =

Use the limit laws to establish the value of each of the following limits after first
manipulating the expression so that it no longer has form 0

0
. Make sure that you

use the step-by-step, vertical format shown in Examples 2.3.1 and Example 2.3.2.
Make sure that you cite each limit law used.

lim
x→−4

x+ 4

2x2 + 5x− 12
2. lim

x→0

sin(2x)
sin(x)3.

lim
β→0

sin(β + π)

sin(β)4. lim
t→0

cos(2t)− 1

cos(t)− 1
5.

lim
x→1

4 ln(x) + 2 ln(x3)

ln(x)− ln(
√
x)

6. lim
w→9

9− w√
w − 3

7.

2.4 Limits at Infinity

We are frequently interested in a function’s “end behavior.” That is, what is
the behavior of the function as the input variable increases without bound or
decreases without bound.
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Many times a function will approach a horizontal asymptote as its end behavior.
Assuming that the horizontal asymptote y = L represents the end behavior of
the function f both as x increases without bound and as x decreases into the
negative without bound, we write lim

x→∞
f(x) = L and lim

x→−∞
f(x) = L.

The formalistic way to read lim
x→∞

f(x) = L is “the limit of f(x) as x approaches
infinity equals L.” When read that way, however, the words need to be taken
anything but literally. In the first place, x isn’t approaching anything! The entire
point is that x is increasing without any bound on how large its value becomes.
Secondly, there is no place on the real number line called “infinity”; infinity is
not a number. Hence x certainly can’t be approaching something that isn’t even
there!

Exercises

1. For the function in Figure 9.6.1 from Lab 9, we could (correctly) write down
that lim

x→∞
f1(x) = −2 and lim

x→−∞
f1(x) = −2. Go ahead and write (and say aloud)

the analogous limits for the functions in Figures 9.6.2, 9.6.3, 9.6.4, and 9.6.5,.

Values of the function f defined by
f(x) = 3x2−16x+5

2x2−13x+15
are shown in Ta-

ble 2.4.1. Both of the questions below
are in reference to this function.

x f(x)

−1000 1.498 . . .

−10,000 1.4998 . . .

−100,000 1.49998 . . .

−1,000,000 1.499998 . . .

Table 2.4.1: f(x) = 3x2−16x+5
2x2−13x+15

Find lim
x→−∞

f(x).2.

What is the equation of the horizontal asymptote for the graph of y =
f(x)?

3.
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Jorge and Vanessa were in a heated
discussion about horizontal asymp-
totes. Jorge said that functions never
cross horizontal asymptotes. Vanessa
said Jorge was nuts. Vanessa whipped
out her trusty calculator and gener-
ated the values in Table 2.4.2 to prove
her point.

t g(t)

103 1.008 . . .

104 0.9997 . . .

105 1.0000004 . . .

106 0.9999997 . . .

107 1.00000004 . . .

108 1.000000009 . . .

109 1.0000000005 . . .

1010 0.99999999995 . . .

Table 2.4.2: g(t) = 1 + sin(t)
t

Find lim
t→∞

g(t).4.

What is the equation of the horizontal asymptote for the graph of y =
g(t)?

5.

How many times does the curve y = g(t) cross its horizontal asymptote?6.

2.5 Limits at Infinity Tending to Zero

When using limit laws to establish limit values as x → ∞ or x → −∞, Limit
Law A1–Limit Law A6 and Limit Law R2 are still in play (when applied in a
valid manner), but Limit Law R1 cannot be applied. (The reason it cannot be
applied is discussed in detail in Exercises 2.8.1.11–18 from Activity 2.8.)
There is a new replacement law that can only be applied when x → ∞ or
x → −∞; this is Limit Law R3. Limit Law R3 essentially says that if the
value of a function is increasing without any bound on how large it becomes
or if the function is decreasing without any bound on how large its absolute
value becomes, then the value of a constant divided by that function must be
approaching zero. An analogy can be found in extremely poor party planning.
Let’s say that you plan to have a pizza party and you buy five pizzas. Suppose
that as the hour of the party approaches more and more guests come in the
door—in fact the guests never stop coming! Clearly as the number of guests
continues to rise the amount of pizza each guest will receive quickly approaches
zero (assuming the pizzas are equally divided among the guests).



20 LAB 2. LIMITS AND CONTINUITY

Exercises

1. Consider the function f defined by f(x) = 12
x

.

Complete Table 2.5.1 without the use
of your calculator. What limit value
and limit law are being illustrated in
the table?

x f(x)

1000

10,000

100,000

1,000,000

Table 2.5.1: f(x) = 12
x

2.6 Ratios of Infinities

Many limits have the form ∞
∞ , which we take to mean that the expressions

in both the numerator and denominator are increasing or decreasing without
bound. When confronted with a limit of type lim

x→∞
f(x)
g(x)

or lim
x→−∞

f(x)
g(x)

that has
the form ∞

∞ , we can frequently resolve the limit if we first divide the dominant
factor of the dominant term of the denominator from both the numerator and
the denominator. When we do this, we need to completely simplify each of
the resultant fractions and make sure that the resultant limit exists before we
start to apply limit laws. We then apply the algebraic limit laws until all of the
resultant limits can be replaced using Limit Law R2 and Limit Law R3. This
process is illustrated in Example 2.6.1.

Example 2.6.1.

lim
t→∞

3t2 + 5t

3− 5t2
= lim

t→∞

(
3t2 + 5t

3− 5t2
·
1/t2

1/t2

)
= lim

t→∞

3 + 5/t
3/t2 − 5

No longer indeterminate form

=
limt→∞ (3 + 5/t)

limt→∞ (3/t2 − 5)
Limit Law A5

=
limt→∞ 3 + limt→∞

5
t

limt→∞
3
t2
− limt→∞ 5

Limit Law A1,Limit Law A2

=
3 + 0

0− 5
Limit Law R2,Limit Law R3

= −3

5
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Exercises

Use the limit laws to establish the value of each limit after dividing the domi-
nant term-factor in the denominator from both the numerator and denominator.
Remember to simplify each resultant expression before you begin to apply the
limit laws.

lim
t→−∞

4t2

4t2 + t3
1. lim

t→∞

6et + 10e2t

2e2t
2. lim

y→∞

√
4y + 5

5 + 9y
3.

2.7 Non-existent Limits

Many limit values do not exist. Sometimes the non-existence is caused by the
function value either increasing without bound or decreasing without bound. In
these special cases we use the symbols ∞ and −∞ to communicate the non-
existence of the limits. Figures 2.7.1–2.7.3 can be used to illustrate some ways
in which we communicate the non-existence of these types of limits.

• In Figure 2.7.1 we could (correctly) write

lim
x→2

k(x) = ∞, lim
x→2−

k(x) = ∞, and lim
x→2+

k(x) = ∞.

• In Figure 2.7.2 we could (correctly) write

lim
t→4

w(t) = −∞, lim
t→4−

w(t) = −∞, and lim
t→4+

w(t) = −∞.

• In Figure 2.7.3 we could (correctly) write

lim
x→−3−

T (x) = ∞ and lim
x→−3+

T (x) = −∞.

There is no shorthand way of communicating the non-existence of the two-
sided limit lim

x→−3
T (x).



22 LAB 2. LIMITS AND CONTINUITY
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Figure 2.7.1: y = k(x) Figure 2.7.2: y = w(t) Figure 2.7.3: y = T (x)

Exercises

1. In the plane provided, draw the graph of a single function, f , that satisfies
each of the following limit statements. Make sure that you draw the necessary
asymptotes and that you label each asymptote with its equation.

lim
x→3−

f(x) = −∞

lim
x→∞

f(x) = 0

lim
x→3+

f(x) = ∞

lim
x→−∞

f(x) = 2 −6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Figure 2.7.4: y = f(x)

2.8 Vertical Asymptotes

Whenever lim
x→a

f(x) ̸= 0 but lim
x→a

g(x) = 0, then lim
x→a

f(x)
g(x)

does not exist because

from either side of a the value of f(x)
g(x)

has an absolute value that will become
arbitrarily large. In these situations the line x = a is a vertical asymptote for
the graph of y = f(x)

g(x)
. For example, the line x = 2 is a vertical asymptote for the

function h defined by h(x) = x+5
2−x

. We say that lim
x→2

x+5
2−x

has the form “not-zero
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over zero.” (Specifically, the form of lim
x→2

x+5
2−x

is 7
0
.) Every limit with form “not-

zero over zero” does not exist. However, we frequently can communicate the
non-existence of the limit using an infinity symbol. In the case of h(x) = x+5

2−x
it’s

pretty easy to see that h(1.99) is a positive number whereas h(2.01) is a negative
number. Consequently, we can infer that lim

x→2−
h(x) = ∞ and lim

x→2+
h(x) = −∞.

Remember, these equations are communicating that the limits do not exist as well
as the reason for their non-existence. There is no short-hand way to communicate
the non-existence of the two-sided limit lim

x→2
h(x).

Exercises

Suppose that g(t) = t+4
t+3

.

What is the vertical asymptote on the graph of y = g(t)?1.

Write an equality about lim
t→−3−

g(t).2.

Write an equality about lim
t→−3+

g(t).3.

Is it possible to write an equality about lim
t→−3

g(t)? If so, do it.4.

Which of the following limits exist?

lim
t→−3−

g(t)? lim
t→−3+

g(t)? lim
t→−3

g(t)?

5.

Suppose that z(x) = 7−3x2

(x−2)2
.

What is the vertical asymptote on the graph of y = z(x)?6.

Is it possible to write an equality about lim
x→2

z(x)? If so, do it.7.

What is the horizontal asymptote on the graph of y = z(x)?8.

Which of the following limits exist?

lim
x→2−

z(x)? lim
x→2+

z(x)? lim
x→2

z(x)?

9.
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10. Consider the function f defined by f(x) = x+7
x−8

. Complete Table 2.8.1
without the use of your calculator.

Use this as an opportunity to dis-
cuss why limits of form “not-zero over
zero” are “infinite limits.” What limit
equation is being illustrated in the ta-
ble?

x x+ 7 x− 8 f(x)

8.1 15.1 0.1

8.01 15.01 0.01

8.001 15.001 0.001

8.0001 15.0001 0.0001

Table 2.8.1: f(x) = x+7
x−8

Hear me, and hear me loud…∞ does not exist. This, in part, is why we cannot
apply Limit Law R1 to an expression like lim

x→∞
x to see that lim

x→∞
x = ∞. When

we write, say, lim
x→7

x = 7, we are replacing the limit, we are replacing the limit
expression with its value—that’s what the replacement laws are all about! When
we write lim

x→∞
x = ∞, we are not replacing the limit expression with a value! We

are explicitly saying that the limit has no value (i.e. does not exist) as well as
saying the reason the limit does not exist. The limit laws can only be applied
when all of the limits in the equation exist. With this in mind, discuss and
decide whether each of the following equations are true or false.

True or False? lim
x→0

(
ex

ex

)
=

lim
x→0

ex

lim
x→0

ex
11.

True or False? lim
x→1

ex

ln(x) =
lim
x→1

ex

lim
x→1

ln(x)12.

True or False? lim
x→0+

(2 ln(x)) = 2 lim
x→0+

ln(x)13.

True or False? lim
x→∞

(ex − ln(x)) = lim
x→∞

ex − lim
x→∞

ln(x)14.

True or False? lim
x→−∞

(
e−x

e−x

)
=

lim
x→−∞

e−x

lim
x→−∞

e−x
15.

True or False? lim
x→1

(
ln(x)
ex

)
=

lim
x→1

ln(x)

lim
x→1

ex
16.

True or False? lim
θ→∞

sin(θ)
sin(θ) =

lim
θ→∞

sin(θ)

lim
θ→∞

sin(θ)17.

True or False? lim
x→−∞

e1/x = elimx→−∞ 1/x18.
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19. Mindy tried to evaluate lim
x→6+

4x−24
x2−12x+36

using the limit laws. Things went
horribly wrong for Mindy (her work is shown below). Identify what is wrong in
Mindy’s work and discuss what a more reasonable approach might have been.
This “solution” is not correct! Do not emulate Mindy’s work!

lim
x→6+

4x− 24

x2 − 12x+ 36
= lim

x→6+

4(x− 6)

(x− 6)2

= lim
x→6+

4

x− 6

=
lim
x→6+

4

lim
x→6+

(x− 6)
Limit Law A5

=
lim
x→6+

4

lim
x→6+

x− lim
x→6+

6
Limit Law A2

=
4

6− 6
Limit Law R1,Limit Law R2

=
4

0

This “solution” is not correct! Do not emulate Mindy’s work!

2.9 Continuity

Many statements we make about functions are only true over intervals where
the function is continuous. When we say a function is continuous over an
interval, we basically mean that there are no breaks in the function over that
interval; that is, there are no vertical asymptotes, holes, jumps, or gaps along
that interval.

Definition 2.9.1 (Continuity). The function f is continuous at the number
a if and only if lim

x→a
f(x) = f(a).

There are three ways that the defining property can fail to be satisfied at a given
value of a. To facilitate exploration of these three manners of failure, we can
separate the defining property into three sub-properties.

1. f(a) must be defined

2. lim
x→a

f(x) must exist

3. lim
x→a

f(x) must equal f(a)

Please note that if either Property 1 or Property 2 fails to be satisfied at a given
value of a, then Property 3 also fails to be satisfied at a.
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Exercises

These questions refer to the function in Figure 2.9.2.

−6 −4 −2 2 4 6
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−4

−2
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t
=

5

t

y

Figure 2.9.2: y = h(t)

Complete Table 2.9.3.

Table 2.9.3: Function values and limit values for h

a h(a) lim
t→a−

h(t) lim
t→a+

h(t) lim
t→a

h(t)

−4

−1

2

3

5

1.

State the values of t at which the function h is discontinuous. For each
instance of discontinuity, state (by number) all of the sub-properties in
Definition 2.9.1 that fail to be satisfied.

2.

2.10 Discontinuities

When a function has a discontinuity at a, the function is sometimes continuous
from only the right or only the left at a. (Please note that when we say “the
function is continuous at a” we mean that the function is continuous from both
the right and left at a.)
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Definition 2.10.1 (One-sided Continuity). The function f is continuous from
the left at a if and only if

lim
x→a−

f(x) = f(a).

The function f is continuous from the right at a if and only if

lim
x→a+

f(x) = f(a).

Some discontinuities are classified as removable discontinuities. Discontinu-
ities that are holes or skips (holes with a secondary point) are removable.

Definition 2.10.2 (Removable Discontinuity). We say that f has a removable
discontinuity at a if f is discontinuous at a but lim

x→a
f(x) exists.

Exercises

1. Referring to the function h shown in Figure 2.9.2, state the values of t where
the function is continuous from the right but not the left. Then state the values
of t where the function is continuous from the left but not the right.
2. Referring again to the function h shown in Figure 2.9.2, state the values of t
where the function has removable discontinuities.

2.11 Continuity on an Interval

Now that we have a definition for continuity at a number, we can go ahead and
define what we mean when we say a function is continuous over an interval.

Definition 2.11.1 (Continuity on an Interval). The function f is continuous
over an open interval if and only if it is continuous at each and every number on
that interval.
The function f is continuous over a closed interval [a, b] if and only if it is
continuous on (a, b), continuous from the right at a, and continuous from the
left at b. Similar definitions apply to half-open intervals.

Exercises

1. Write a definition for continuity on the half-open interval (a, b] .

Referring to the function in Figure 2.9.2, decide whether each of the following
statements are true or false.
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True or False? h is continuous on [−4,−1) .2.

True or False? h is continuous on (−4,−1).3.

True or False? h is continuous on (−4,−1] .4.

True or False? h is continuous on (−1, 2] .5.

True or False? h is continuous on (−1, 2).6.

True or False? h is continuous on (−∞,−4).7.

True or False? h is continuous on (−∞,−4] .8.

Several functions are described below. Your task is to sketch a graph for each
function on its provided axis system. Do not introduce any unnecessary disconti-
nuities or intercepts that are not directly implied by the stated properties. Make
sure that you draw all implied asymptotes and label them with their equations.

f(0) = 4 and f(4) = 5

lim
x→4−

f(x) = 2 and lim
x→4+

f(x) = 5

lim
x→−∞

f(x) = lim
x→∞

f(x) = 4

f has at most one discontinuity. −6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Figure 2.11.2: y = f(x)

9.
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g(0) = 4, g(3) = −2, and g(6) = 0

lim
x→−2

g(x) = lim
x→−∞

g(x) = ∞

g is continuous and has constant slope
on (0,∞). −6 −4 −2 2 4 6
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y

Figure 2.11.3: y = g(x)

10.

m(−6) = 5

lim
x→−4+

m(x) = −2

lim
x→3

m(x) = lim
x→∞

m(x) = −∞

m only has discontinuities at −4 and
3. m has no zeros. m has slope −2
over (−∞,−4). m is continuous over
[−4, 3) .
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Figure 2.11.4: y = m(x)

11.

2.12 Discontinuous Formulas

Discontinuities are a little more challenging to identify when working with for-
mulas than when working with graphs. One reason for the added difficulty is
that when working with a function formula you have to dig into your memory
bank and retrieve fundamental properties about certain types of functions.
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Exercises

1. What would cause a discontinuity on a rational function (a polynomial di-
vided by another polynomial)?
2. If y is a function of u, defined by y = ln(u), what is always true about the
argument of the function, u, over intervals where the function is continuous?
3. Name three values of θ where the function tan(θ) is discontinuous.
4. What is the domain of the function k, where k(t) =

√
t− 4?

5. What is the domain of the function g, where g(t) = 3
√
t− 4?

2.13 Piecewise-Defined Functions

Piecewise-defined functions are functions where the formula used depends upon
the value of the input. When looking for discontinuities on piecewise-defined
functions, you need to investigate the behavior at values where the formula
changes as well as values where the issues discussed in Activity 2.12 might pop
up.

Exercises

This question is all about the function f defined by

f(x) =


4

5−x
x < 1

x−3
x−3

1 < x < 4

2x+ 1 4 ≤ x ≤ 7
15
8−x

x > 7.

Complete Table 2.13.1.

Table 2.13.1: Function values and limit values for f

a f(a) lim
x→a−

f(x) lim
x→a+

f(x) lim
x→a

f(x)

1

3

4

5

7

8

1.
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Complete Table 2.13.2.

Table 2.13.2: Discontinuity analysis for f

Location of
discontinuity

From Definition 2.9.1,
sub-property (1, 2, 3)
that is not met

Removable? Continuous
from one side?

2.

Consider the function f defined by f(x) =


5

x−10
x ≤ 5

5
5x−30

5 < x < 7
x−2
12−x

x > 7.

State the values of x where each of the following occur. If a stated property
doesn’t occur, make sure that you state that (as opposed to simply not respond-
ing to the question). No explanation necessary.

At what values of x is f discontinuous?3.

At what values of x is f continuous from the left, but not from the right?4.

At what values of x is f continuous from the right, but not from the left?5.

At what values of x does f have removable discontinuities?6.

Consider the function g defined by g(x) =


C

x−17
x < 10

C + 3x x = 10

2C − 4 x > 10.

The symbol C represents the same real number in each of the piecewise formulas.

Find the value for C that makes the function continuous on (−∞, 10] .
Make sure that your reasoning is clear.

7.

Is it possible to find a value for C that makes the function continuous
over (−∞,∞)? Explain.

8.
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2.14 Supplement

Exercises

For Exercises 2.14.1.1–5, state the limit suggested by the values in the table and
state whether or not the limit exists. The correct answer for Exercise 1 has been
given to help you understand the instructions.

t g(t)

−10,000 99.97

−100,000 999.997

−1,000,000 9999.9997

Answer: lim
t→−∞

g(t) = ∞.

The limit does not exist.

1.

x f(x)

51,000 −3.2× 10−5

510,000 −3.02× 10−7

5,100,000 −3.002× 10−9

2.

t z(t)

0.33 0.66

0.333 0.666

0.3333 0.6666

3.

θ g(θ)

−0.9 2,999,990

−0.99 2,999,999

−0.999 2,999,999.9

4.

t T (t)

0.778 29,990

0.7778 299,999

0.77778 2,999,999.9

5.

6. Sketch onto Figure 2.14.1 a function, f , with the following properties. Your
graph should include all of the features addressed in lab.

lim
x→−4−

f(x) = 1

lim
x→−4+

f(x) = −2

lim
x→3

f(x) = lim
x→∞

f(x) = −∞

The only discontinuities on f are at
−4 and 3. f has no x-intercepts. f
is continuous from the right at −4. f
has constant slope −2 over (−∞,−4).
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Figure 2.14.1: y = f(x)
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7. Sketch onto Figure 2.14.2 a function, f , with each of the properties stated
below. Assume that there are no intercepts or discontinuities other than those
directly implied by the given properties. Make sure that your graph includes all
of the relevant features addressed in lab.

f(−2) = 0

f(0) = −1

f(−4) = 5

lim
x→−∞

f(x) = lim
x→∞

f(x) = 3

lim
x→−4+

f(x) = −2

lim
x→−4−

f(x) = 5

lim
x→3−

f(x) = −∞

lim
x→3+

f(x) = ∞
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Figure 2.14.2: y = f(x)

8. Determine all of the values of x where the function f (given below) has
discontinuities. At each value where f has a discontinuity, determine if f is
continuous from either the right or left at x and also state whether or not the
discontinuity is removable.

f(x) =


2π
x

x ≤ 3

sin
(
2π
x

)
3 < x < 4

sin(x)
sin(x) 4 < x ≤ 7

3− 2x−8
x−4

x > 7

9. Determine the value(s) of k that make(s) the function g defined by g(t) ={
t2 + kt− k t ≥ 3

t2 − 4k t < 3
continuous over (−∞,∞).

Determine the appropriate symbol to write after an equal sign following each of
the given limits. In each case, the appropriate symbol is either a real number, ∞,
or −∞. Also, state whether or not each limit exists and if the limit exists prove
its existence (and value) by applying the appropriate limit laws. The Rational
Limit Forms table in Appendix A summarizes strategies to be employed based
upon the initial form of the limit.
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lim
x→4−

(
5− 1

x− 4

)
10. lim

x→∞

e2/x

e1/x
11.

lim
x→2+

x2 − 4

x2 + 4
12. lim

x→2+

x2 − 4

x2 − 4x+ 4
13.

lim
x→∞

ln(x) + ln(x6)

7 ln(x2)
14. lim

x→−∞

3x3 + 2x

3x− 2x3
15.

lim
x→∞

sin
(

πe3x

2ex + 4e3x

)
16. lim

x→∞

ln(1/x)
ln(x/x)17.

lim
x→5

√
x2 − 12x+ 35

5− x
18. lim

h→0

4(3 + h)2 − 5(3 + h)− 21

h
19.

lim
h→0

5h2 + 3

2− 3h2
20. lim

h→0

√
9− h− 3

h
21.

lim
θ→π

2

sin
(
θ + π

2

)
sin(2θ + π)

22. lim
x→0+

ln(xe)

ln(ex)23.

Draw sketches of the curves y = ex, y = e−x, y = ln(x), and y = 1
x
. Note the

coordinates of any and all intercepts. This is something you should be able to do
from memory/intuition. If you cannot already do so, spend some time reviewing
whatever you need to review so that you can do so. Once you have the graphs
drawn, fill in each of the blanks below and decide whether or not each limit
exists. The appropriate symbol for some of the blanks is either ∞ or −∞.

lim
x→∞

ex = (exists?)24. lim
x→−∞

ex = (exists?)25.

lim
x→0

ex = (exists?)26. lim
x→∞

e−x = (exists?)27.

lim
x→−∞

e−x = (exists?)28. lim
x→0

e−x = (exists?)29.

lim
x→∞

ln(x) = (exists?)30. lim
x→1

ln(x) = (exists?)31.

lim
x→0+

ln(x) = (exists?)32. lim
x→∞

1

x
= (exists?)33.

lim
x→−∞

1

x
= (exists?)34. lim

x→0+

1

x
= (exists?)35.

lim
x→0−

1

x
= (exists?)36. lim

x→∞
e1/x = (exists?)37.

lim
x→∞

1

ex
= (exists?)38. lim

x→−∞

1

ex
= (exists?)39.

lim
x→∞

1

e−x
= (exists?)40. lim

x→−∞

1

e−x
= (exists?)41.



Lab 3

Introduction to the First
Derivative

3.1 Instantaneous Velocity

Most of the focus in Lab 1 was on average rates of change. While the idea of
rates of change at one specific instant was alluded to, we couldn’t explore that
idea formally because we hadn’t yet talked about limits. Now that we have
covered average rates of change and limits we can put those two ideas together
to discuss rates of change at specific instances in time.
Suppose that an object is tossed into the air in such a way that the elevation
of the object (measured in ft) is given by the function s defined by s(t) =
40 + 40t − 16t2 where t is the amount of time that has passed since the object
was tossed (measured in s). Let’s determine the velocity of the object 2 seconds
into this flight.
Recall that the difference quotient s(2+h)−s(2)

h
gives us the average velocity for

the object between the times t = 2 and t = 2 + h. So long as h is positive, we
can think of h as the length of the time interval. To infer the velocity exactly 2
seconds into the flight we need the time interval as close to 0 as possible; this is
done using the appropriate limit in Example 3.1.1.

Example 3.1.1.

v(2) = lim
h→0

s(2 + h)− s(2)

h

= lim
h→0

[
40 + 40 (2 + h)− 16 (2 + h)2

]
− [40 + 40(2)− 16(2)2]

h

= lim
h→0

40 + 80 + 40h− 64− 64h− 16h2 − 56

h

= lim
h→0

−24h− 16h2

h

35
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= lim
h→0

h (−24− 16h)

h
= lim

h→0
(−24− 16h)

= −24− 16 · 0
= −24

From this we can infer that the velocity of the object 2 seconds into its flight is
−24 ft

s . From that we know that the object is falling at a speed of 24 ft
s .

Exercises

Suppose that an object is tossed into
the air so that its elevation p (mea-
sured in m) is given by p(t) = 300 +
10t − 4.9t2, where t is the amount of
time that has passed since the object
was tossed (measured in s).

t1
p(t1)−p(4)

t1−4

3.9

3.99

3.999

4.001

4.01

4.1

Table 3.1.2: Average Velocities

Evaluate lim
h→0

p(4+h)−p(4)
h

showing each step in the simplification process
(as illustrated in Example 3.1.1).

1.

What is the unit for the value calculated in Exercise 1 and what does
the value (including unit) tell you about the motion of the object?

2.

Copy Table 3.1.2 onto your paper and compute and record the missing
values. Do these values support your answer to Exercise 2?

3.

3.2 Tangent Lines

In previous activities we saw that if p is a position function, then the difference
quotient for p can be used to calculate average velocities and the expression
p(t0+h)−p(t0)

h
calculates the instantaneous velocity at time t0.

Graphically, the difference quotient of a function f can be used to calculate the
slope of secant lines to f . What happens when we take the run of the secant
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line to zero? Basically, we are connecting two points on the line that are really,
really, (really), close to one another. As mentioned above, sending h to zero
turns an average velocity into an instantaneous velocity. Graphically, sending h
to zero turns a secant line into a tangent line.

Example 3.2.1. The tangent line at x = 4 to the function f defined by
f(x) =

√
x is shown in Figure 3.2.2. Here is a calculation of the slope of this

line.

mtan = lim
h→0

f(4 + h)− f(4)

h

= lim
h→0

√
4 + h−

√
4

h

= lim
h→0

(√
4 + h− 2

h
·
√
4 + h+ 2√
4 + h+ 2

)
= lim

h→0

4 + h− 4

h
(√

4 + h+ 2
)

= lim
h→0

h

h
(√

4 + h+ 2
)

= lim
h→0

1

1
(√

4 + h+ 2
)

=
1√

4 + 0 + 2

=
1

4
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y
y = f(x)
tangent line

Figure 3.2.2: y = f(x) and its
tangent line at x = 4

You should verify that the slope of the tangent line shown in Figure 3.2.2 is
indeed 1

4
. You should also verify that the equation of the tangent line is y =

1
4
x+ 1.
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Exercises

Consider the function g given by g(x) =
5−

√
4− x graphed in Figure 3.2.3.

−4 −2 2 4 6 8
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x

y
y = g(x)
tangent line

Figure 3.2.3: y = g(x) and its
tangent line at x = 3

Find the slope of the tangent line shown in Figure 3.2.3 using

mtan = lim
h→0

g(3 + h)− g(3)

h
.

Show work consistent with that illustrated in Example 3.2.1.

1.

Use the line in Figure 3.2.3 to verify your answer to Exercise 1.2.

State the equation of the tangent line to g at x = 3.3.

3.3 The First Derivative

We have seen two applications of expressions of the form lim
h→0

f(a+h)−f(a)
h

. It turns
out that this expression is so important in mathematics, the sciences, economics,
and many other fields that it deserves a name in and of its own right. We call
the expression the first derivative of f at a.
So far we’ve always fixed the value of a before making the calculation. There’s
no reason why we couldn’t use a variable for a, make the calculation, and then
replace the variable with specific values; in fact, it seems like this might be a
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better plan all around. This leads us to a definition of the first derivative
function.

Definition 3.3.1 (The First Derivative Function). If f is a function of x, then
we define the first derivative function, f ′, as

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

The symbols f ′(x) are read aloud as “f prime of x” or “f prime at x.”

As we’ve already seen, f ′(a) gives us the slope of the tangent line to f at a.
We’ve also seen that if s is a position function, then s′(a) gives us the instan-
taneous velocity at a. It’s not too much of a stretch to infer that the velocity
function for s would be v(t) = s′(t).
Let’s find a first derivative.

Example 3.3.2. Let f(x) = 3
2−x

. We can find f ′(x) as follows.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

3
2−(x+h)

− 3
2−x

h

= lim
h→0

(
3

2−x−h
− 3

2−x

h
· (2− x− h)(2− x)

(2− x− h)(2− x)

)

= lim
h→0

3(2− x)− 3(2− x− h)

h(2− x− h)(2− x)

= lim
h→0

6− 3x− 6 + 3x+ 3h

h(2− x− h)(2− x)

= lim
h→0

3h

h(2− x− h)(2− x)

= lim
h→0

3

(2− x− h)(2− x)

=
3

(2− x− 0)(2− x)

=
3

(2− x)2
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Figure 3.3.3: y = f(x) = 3
2−x
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Exercises

A graph of the function f defined by f(x) = 3
2−x

is shown in Figure 3.3.3 and
the formula for f ′(x) is derived in Example 3.3.2.

Use the formula f ′(x) = 3
(2−x)2

to calculate f ′(1) and f ′(5).1.

Draw onto Figure 3.3.3 a line through the point (1, 3) with a slope of
f ′(1). Also draw a line though the point (5,−1) with a slope of f ′(5).
What are the names for the two lines you just drew? What are their
equations?

2.

Showing work consistent with that shown in Example 3.3.2, find the
formula for g′(x) where g(x) = 5

2x+1
.

3.

Suppose that the elevation of an object (measured in ft) is given by s(t) =
−16t2 + 112t+ 5 where t is the amount of time that has passed since the object
was launched into the air (measured in s).

Use the equations below to find the formula for the velocity function
associated with this motion. The first two lines of your presentation
should be an exact copy of the two lines below.

v(t) = s′(t)

= lim
h→0

s(t+ h)− s(t)

h

4.

Find the values of v(2) and v(5). What is the unit on each of these
values? What do the values tell you about the motion of the object?
Don’t just say “the velocity”—describe what is actually happening to
the object 2 seconds and 5 seconds into its travel.

5.

Use the velocity function to determine when the object reaches its max-
imum elevation. (Think about what must be true about the velocity
at that instant.) Also, what is the common mathematical term for the
point on the parabola y = s(t) that occurs at that value of t?

6.

Use (3.3.1) to find the formula for v′(t). The first line of your presentation
should be an exact copy of (3.3.1).

v′(t) = lim
h→0

v(t+ h)− v(t)

h
(3.3.1)

7.
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What is the common name for the function v′(t)? Is its formula consis-
tent with what you know about objects in free fall on Earth?

8.

9. What is the constant slope of the function w defined by w(x) = 12? Verify
this by using Definition 3.3.1 to find the formula for w′(x).

3.4 Derivative Units

We can think about the instantaneous velocity as being the instantaneous rate
of change in position. In general, whenever you see the phrase “rate of change”
you can assume that the rate of change at one instant is being discussed. When
we want to discuss average rates of change over a time interval we always say
“average rate of change.”
In general, if f is any function, then f ′(a) tells us the rate of change in f at
a. Additionally, if f is an applied function with an input unit of iunit and an
output unit of funit, then the unit on f ′(a) is funit

iunit
. Please note that this unit

loses all meaning if it is simplified in any way. Consequently, we do not simplify
derivative units in any way, shape, or form.
For example, if v(t) is the velocity of your car (measured in mi

h ) where t is the
amount of time that has passed since you hit the road (measured in minutes),
then the unit on v′(t) is mi/h

min .

Exercises

Determine the unit for the first derivative function for each of the following
functions. Remember, we do not simplify derivative units in any way, shape, or
form.

V (r) is the volume of a sphere (measured in mL) with radius r (measured
in mm).

1.

A(x) is the area of a square (measured in ft2) with sides of length x
(measured in ft).

2.

V (t) is the volume of water in a bathtub (measured in gal) where t is
the amount of time that has elapsed since the bathtub began to drain
(measured in minutes).

3.

R(t) is the rate at which a bathtub is draining (measured in gal
min) where t

is the amount of time that has elapsed since the bathtub began to drain
(measured in minutes).

4.
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5. Akbar was given a formula for the function described in Exercise 3. Akbar
did some calculations and decided that the value of V ′(2) was (without unit)
1.5. Nguyen took one look at Akbar’s value and said “that’s wrong” What is it
about Akbar’s value that caused Nguyen to dismiss it as wrong?

6. After a while Nguyen convinced Akbar that he was wrong, so Akbar set
about doing the calculation over again. This time Akbar came up with a value
of −12528. Nguyen took one look at Akbar’s value and declared “still wrong.”
What’s the problem now?

Consider the function described in Exercise 4.

What would it mean if the value of R(t) was zero for all t > 0?7.

What would it mean if the value of R′(t) was zero for all t in (0, 2.25)?8.
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3.5 Supplement

Exercises

Find the first derivative formula for each of the following functions twice: first
by evaluating lim

h→0

f(x+h)−f(x)
h

and then by evaluating lim
t→x

f(t)−f(x)
t−x

.

f(x) = x21. f(x) =
√
x2. f(x) = 73.

4. It can be shown that lim
h→0

sin(h)
h

= 1 and lim
h→0

cos(h)−1
h

= 0. Use these limits to
help you to establish the first derivative formula for sin(x).

Suppose that an object is tossed into the air in such a way that the elevation of
the object (measured in ft) t seconds after the object was tossed is given by the
function s(t) = 150 + 60t− 16t2.

Find the velocity function for this motion and use it to determine the
velocity of the object 4.1 s into its motion.

5.

Find the acceleration function for this motion and use that function to
determine the acceleration of the object 4.1 s into its motion.

6.

Determine the unit on the first derivative function for each of the following
functions. Remember, we do not simplify derivative units in any way, shape, or
form.

R(p) is Carl’s heart rate (beats per min) when he jogs at a rate of p

(measured in ft
min).

7.

F (v) is the fuel consumption rate gal
mi of Hanh’s pick-up when she drives

it on level ground at a constant speed of v (measured in mi
h ).

8.

v(t) is the velocity of the space shuttle mi
h where t is the amount of time

that has passed since liftoff (measured in s).
9.

h(t) is the elevation of the space shuttle (mi) where t is the amount of
time that has passed since lift-off (measured in s).

10.

Referring to the functions in Exercises 3.5.1.7–10, write sentences that explain
the meaning of each of the following function values.
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R(300) = 8411. R′(300) = 0.0212.

F (50) = 0.0313. F ′(50) = −0.000614.

v(20) = 26615. v′(20) = 18.916.

h(20) = 0.717. h′(20) = 0.07418.

It can be shown that the derivative formula for the function f defined by f(x) =
2x3+2x+1
3+5x2 is f ′(x) = 10x4+8x2−10x+6

25x4+30x2+9
.

Determine the equation of the tangent line to f at 1.19.

A graph of f is shown in Figure 3.5.1; axis scales have deliberately been
omitted from the graph.

The graph shows that f quickly
resembles a line. In a detailed
sketch of f we would reflect
this apparent linear behavior by
adding a skew asymptote. What
is the slope of this skew asymp-
tote?

x

y

Figure 3.5.1:
y = f(x) = 2x3+2x+1

3+5x2

20.



Lab 4

Functions, Derivatives, and
Antiderivatives

4.1 Graph Features

Functions, derivatives, and antiderivatives have many entangled properties. For
example, over intervals where the first derivative of a function is always posi-
tive, we know that the function itself is always increasing. (Do you understand
why?) Many of these relationships can be expressed graphically. Consequently,
it is imperative that you fully understand the meaning of some commonly used
graphical expressions. These expressions are loosely defined in Definition 4.1.1.

Definition 4.1.1 (Some Common Graphical Phrases). These are loose, informal
definitions. Technical, precise definitions can be found elsewhere.

Positive function. The vertical co-
ordinates of points on the function are
positive. A function is positive when-
ever its graph lies above the horizon-
tal axis.

Negative function. The vertical co-
ordinates of points on the function
are negative. A function is negative
whenever its graph lies below the hor-
izontal axis.

Increasing function. The vertical
coordinates of the function increase as
you move along the curve from left to
right. Linear functions with positive
slope are always increasing.

Decreasing function. The vertical
coordinates of the function decrease
as you move along the curve from left
to right. Linear functions with nega-
tive slope are always decreasing.

Concave up function. A function is
concave up at a if the tangent line to
the function at a lies below the curve.
The bottom half of a circle is concave
up.

Concave down function. A func-
tion is concave down at a if the tan-
gent line to the function at a lies
above the curve. The top half of a
circle is concave down.

45
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Exercises

Answer each of the following questions in reference to the function shown in
Figure 4.1.2. Each answer is an interval (or intervals) along the x-axis.

Use interval notation when expressing
your answers. Make each interval as
wide as possible; that is, do not break
an interval into pieces if the interval
does not need to be broken. Assume
that the slope of the function is con-
stant on (−∞,−5), (3, 4), and (4,∞).
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Figure 4.1.2: y = f(x)

Over what intervals is the function positive?1.

Over what intervals is the function negative?2.

Over what intervals is the function increasing?3.

Over what intervals is the function decreasing?4.

Over what intervals is the function concave up?5.

Over what intervals is the function concave down?6.

Over what intervals is the function linear?7.

Over what intervals is the function constant?8.

4.2 Graphical Derivatives

Much information about a function’s first derivative can be gleaned simply by
looking at a graph of the function. In fact, a person with good visual skills can
“see” the graph of the derivative while looking at the graph of the function. This
activity focuses on helping you develop that skill.
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Exercises

A parabolic function is shown in Figure 4.2.1. The next several questions are in
reference to that function.
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Figure 4.2.1: y = g(x) Figure 4.2.2: y = g(x) Table 4.2.3:
y = g′(x)

Several values of g′ are given in Table 4.2.3. For each given value of
x draw onto Figure 4.2.1 a nice long line segment at the corresponding
point on g whose slope is equal to the value of g′. If we think of these
line segments as actual lines, what do we call the lines?

1.

What is the value of g′(1)? How do you know? Enter that value into
Table 4.2.3.

2.

The function g is symmetric across the line x = 1; that is, if we move
equal distance to the left and right from this line the corresponding y-
coordinates on g are always equal. Notice that the slopes of the tangent
lines are “equal but opposite” at points that are equally removed from
the axis of symmetry; this is reflected in the values of g′(−1) and g′(3).
Use the idea of “equal but opposite slope equidistant from the axis of
symmetry” to complete Table 4.2.3.

3.

Plot the points from Table 4.2.3 onto Figure 4.2.2 and connect the dots.
Determine the formula for the resultant linear function.

4.

The formula for g(x) is −0.5x2+x+5.5. Use Definition 3.3.1 to determine
the formula for g′(x).

5.
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The line you drew onto Figure 4.2.2 is not a tangent line to g. Just what
exactly is this line?

6.

A function f is shown in Figure 4.2.4 and the corresponding first derivative
function f ′ is shown in Figure 4.2.5. Answer each of the following questions
referencing these two functions.
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Figure 4.2.4: y = f(x) Figure 4.2.5: y = f ′(x)

Draw the tangent line to f at the three points indicated in Figure 4.2.4
after first using the graph of f ′ to determine the exact slope of the
respective tangent lines.

7.

Write a sentence relating the slope of the tangent line to f with the
corresponding y-coordinate on f ′.

8.

Copy each of the following sentences onto your paper and supply the
words or phrases that correctly complete each sentence.

• Over the interval where f ′ is negative, f is …
• Over the interval where f ′ is positive, f is …
• Over the interval where f ′ is increasing, f is …
• Over the interval where f ′ is decreasing, f is …

9.

10. In each of Figures 4.2.6 and 4.2.7 a function (the solid curve) is given;
both of these functions are symmetric about the y-axis. The first derivative of
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each function (the dash-dotted curves) have been drawn over the interval (0, 7).
Use the given portion of the first derivative together with the symmetry of the
function to help you draw each first derivative over the interval (−7, 0). Please
note that a function that is symmetric across a vertical line has a first derivative
that is symmetric about a point. Similarly, a function that is symmetric about
a point has a first derivative that is symmetric across a vertical line.
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y = g(x)
y = g′(x)
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Figure 4.2.6: y = f(x) and part of
the curve y = f ′(x)

Figure 4.2.7: y = f(x) and part of
the curve y = f ′(x)

A graph of the function h given by h(x) = 1
x

is shown in Figure 4.2.8.
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Figure 4.2.8: y = h(x) = 1
x

Figure 4.2.9: y = h′(x)

Except at 0, there is something that is always true about the value of h′;
what is the common trait?

11.

Use Definition 3.3.1 to find the formula for h′(x).12.
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Does the formula for h′(x) support your answer to Exercise 11?13.

Use the formula for h′(x) to determine the horizontal and vertical asymp-
totes to the graph of y = h′(x).

14.

Keeping it simple, draw onto Figure 4.2.9 a curve with the asymptotes
found in Exercise 14 and the property determined in Exercise 11. Does
the curve you drew have the properties you would expect to see in the
first derivative of h? For example, h is concave down over (−∞, 0), and
concave up over (0,∞); what are the corresponding differences in the
behavior of h′ over those two intervals?

15.

16. A graph of the function g is shown in Figure 4.2.10. The absolute minimum
value ever obtained by g′ is −3. With that in mind, draw g′ onto Figure 4.2.11.
Make sure that you draw and label any and all necessary asymptotes. Please
note that g is symmetric about the point (1, 2).
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Figure 4.2.10: y = g(x) Figure 4.2.11: y = g′(x)

Answer the following questions in reference to the function w, shown in Fig-
ure 4.2.12.



ACTIVITY 4.2. GRAPHICAL DERIVATIVES 51

−1 1 2 3 4 5 6 7 8 9 10

−1

1

2

3

4

5

6

7

8

9

10

x

y

Figure 4.2.12: y = w(x)

An inflection point is a point where the function is continuous and the
concavity of the function changes.

The inflection points on w
occur at 2, 3.25, and 6.
With that in mind, over
each interval stated in Ta-
ble 4.2.13 exactly two of the
properties from its caption
apply to w′. Complete Ta-
ble 4.2.13 with the appro-
priate pairs of properties.

Interval Properties of w′

(−∞, 2)

(2, 3.25)

(3.25, 4)

(4, 6)

(6, 7)

(7,∞)

Table 4.2.13: Properties of w′ (posi-
tive, negative, increasing, or decreasing)

17.
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In Table 4.2.14, three possible values are given for w′ at several values
of x. In each case, one of the values is correct. Use tangent lines to w to
determine each of the correct values.

x Proposed values
0 2/3 or 8/3 or 28/3

1 1/2 or 3/2 or 5/2

3 1/3 or 1 or 3

5 −1/2 or −1 or −3/2

6 −4/3 or −8/3 or −4

8 1 or 6 or 12
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Table 4.2.14: Choose correct
values for w′

Figure 4.2.15: y = w′(x)

18.

The value of w′ is the same at 2, 4, and 7. What is this common value?19.

Put it all together and draw w′ onto Figure 4.2.15.20.

4.3 Nondifferentiability

A function is said to be nondifferentiable at any value where its first derivative is
undefined. There are three graphical behaviors that lead to non-differentiability.

• f is nondifferentiable at a if f is discontinuous at a.

• f is nondifferentiable at a if the slope of f is different from the left and
right at a.

• f is nondifferentiable at a if f has a vertical tangent line at a.
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Exercises

Consider the function k shown in Figure 4.3.1. Please note that k has a vertical
tangent line at −4.
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Figure 4.3.1: y = k(x) Figure 4.3.2: y = k′(x)

There are four values where k is nondifferentiable; what are these values?1.

Draw k′ onto Figure 4.3.2.2.

Consider the function g shown in Figure 4.3.3.
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Figure 4.3.3: y = g(x) Figure 4.3.4: y = g′(x)
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g′ has been drawn onto Figure 4.3.4 over the interval (−5,−2.5). Use
the piecewise symmetry and periodic behavior of g to help you draw the
remainder of g′ over (−7, 7).

3.

What six-syllable word applies to g at −5, 0, and 5?4.

What five-syllable and six-syllable words apply to g′ at −5, 0, and 5?5.

4.4 Higher Order Derivatives

Seeing as the first derivative of f is a function in its own right, f ′ must have its
own first derivative. The first derivative of f ′ is the second derivative of f
and is symbolized as f ′′ (f double-prime). Likewise, f ′′′ (f triple-prime) is the
first derivative of f ′′, the second derivative of f ′, and the third derivative of
f .

All of the graphical relationships
you’ve established between f and f ′

work their way down the derivative
chain; this is illustrated in Table 4.4.1.

When f ′ is … f is …
When f ′′ is … f ′ is …
When f ′′′ is … f ′′ is …
Positive Increasing
Negative Decreasing
Constantly Zero Constant
Increasing Concave Up
Decreasing Concave Down
Constant Linear

Table 4.4.1: Relationships between
f , f ′, f ′′ and f ′′′

Exercises

1. Extrapolating from Table 4.4.1, what must be true about f over intervals
where f ′′ is, respectively: positive, negative, or constantly zero?
2. A function, g, and its first three derivatives are shown in Figures 4.4.2–
4.4.5, although not in that order. Determine which curve is which function
(g, g′, g′′, g′′′).
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Figure 4.4.2: Figure 4.4.3: Figure 4.4.4: Figure 4.4.5:

Three containers are shown in Figures 4.4.6–4.4.8. Each of the following ques-
tions are in reference to these containers.

Figure 4.4.6: Figure 4.4.7: Figure 4.4.8:

Suppose that water is being poured into each of the containers at a
constant rate. Let ha, hb, and hc be the heights (measured in cm) of
the liquid in containers 4.4.6–4.4.8 respectively, t seconds after the water
began to fill the containers. What would you expect the sign to be on the
second derivative functions h′′

a, h′′
b , and h′′

c while the containers are being
filled? (Hint: Think about the shape of the curves y = ha(t), y = hb(t),
and y = hc(t).)

3.

Suppose that water is being drained from each of the containers at a
constant rate. Let ha, hb, and hc be the heights (measured in cm) of
the liquid remaining in the containers t seconds after the water began to
drain. What would you expect the sign to be on the second derivative
functions h′′

a, h′′
b , and h′′

c while the containers are being drained?

4.

5. During the recession of 2008–2009, the total number of employed Americans
decreased every month. One month a talking head on the television made the
observation that “at least the second derivative was positive this month.” Why
was it a good thing that the second derivative was positive?

6. During the early 1980s the problem was inflation. Every month the average
price for a gallon of milk was higher than the month before. Was it a good thing
when the second derivative of this function was positive? Explain.
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4.5 Antiderivatives

The derivative continuum can be expressed backwards as well as forwards. When
you move from function to function in the reverse direction the resultant func-
tions are called antiderivatives and the process is called antidifferentiation.
These relationships are shown in Figures 4.5.1 and 4.5.2.

f
differentiate−−−−−−→ f ′ differentiate−−−−−−→ f ′′ differentiate−−−−−−→ f ′′′ differentiate−−−−−−→ · · ·

Figure 4.5.1: Differentiating

· · · f ′′′ antidifferentiate−−−−−−−−−→ f ′′ antidifferentiate−−−−−−−−−→ f ′ antidifferentiate−−−−−−−−−→ f
antidifferentiate−−−−−−−−−→ F

Figure 4.5.2: Antidifferentiating

There are (at least) two important differences between the differentiation chain
and the antidifferentiation chain (besides their reversed order).

• When you differentiate, the resultant function is unique. When you antidif-
ferentiate, you do not get a unique function—you get a family of functions;
specifically, you get a set of parallel curves.

• We introduce a new function in the antidifferentiation chain. We say that
F is an antiderivative of f . This is where we stop in that direction; we do
not have a variable name for an antiderivative of F .

Since F is considered an antiderivative of f , it must be the case that f is the
first derivative of F . Hence we can add F to our derivative chain resulting in
Figure 4.5.3.

F
differentiate−−−−−−→ f

differentiate−−−−−−→ f ′ differentiate−−−−−−→ f ′′ differentiate−−−−−−→ f ′′′ differentiate−−−−−−→ · · ·

Figure 4.5.3: Differentiating

Exercises
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Each of the linear functions in Fig-
ure 4.5.4 has the same first derivative
function.
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Figure 4.5.4:

Draw this common first derivative function onto Figure 4.5.4 and label
it g.

1.

Each of the given lines Figure 4.5.4 is called what in relation to g?2.

The function f is shown in Figure 4.5.5. Reference this function in the following
questions.
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Figure 4.5.5: y = f(x) Figure 4.5.6:
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Figure 4.5.7: Figure 4.5.8:

At what values of x is f nondifferentiable?3.

At what values of x are antiderivatives of f nondifferentiable?4.

Draw onto Figure 4.5.6 the continuous antiderivative of f that passes
through the point (−3, 1). Note that every antiderivative of f increases
exactly one unit over the interval (−3,−2).

5.

Because f is not continuous, there are other antiderivatives of f that pass
through the point (−3, 1). Specifically, antiderivatives of f may or may
not be continuous at −1. Draw onto Figures 4.5.7 and 4.5.8 different
antiderivatives of f that pass through the point (−3, 1).

6.

7. Recall that a function, f , is periodic if there exists a constant, C, with the
property that f(x+ C) = f(x) for all values of x in the domain of f . The
function y = sin(x) is an example of a periodic function. Specifically, the function
has a period of 2π because over any interval of length 2π the behavior of the
function is exactly the same as it was the previous interval of length 2π. A little
more precisely, sin(x+ 2π) = sin(x) regardless of the value of x.
Jasmine was thinking and told her lab assistant that derivatives and antideriva-
tives of periodic functions must also be periodic. Jasmine’s lab assistant told her
that she was half right. Which half did Jasmine have correct—the part about
the derivatives necessarily being periodic or the part about antiderivatives nec-
essarily being periodic? Also, draw a function that illustrates that the other half
of Jasmine’s statement is not correct.
8. Consider the function g shown in Figure 4.5.9.
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Figure 4.5.9: y = g(t) Figure 4.5.10: y = G(t)

Let G be an antiderivative of g. Suppose that G is continuous on [−6, 6],
G(−6) = −3, and that the greatest value G ever achieves is 6. Draw G onto
Figure 4.5.10.

Answer the following questions in refer-
ence to a continuous function g whose
first derivative is shown in Figure 4.5.11.
You do not need to state how you made
your determination; just state the in-
terval(s) or values of x that satisfy the
stated property. Note: the correct an-
swer to one or more of these questions
may be “There is no way of knowing.”
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Figure 4.5.11: y = g′(x)

Over what interval(s) is g′′ positive and increasing?9.

At what value(s) of x is g nondifferentiable?10.

Over what interval(s) is g never negative?11.

At what value(s) of x is every antiderivative of g nondifferentiable?12.

Over what interval(s) does g′′ have a constant value?13.

Over what interval(s) is g linear?14.
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Over what interval(s) are antiderivatives of g linear?15.

Over what interval(s) is g′′′ never negative?16.

4.6 Graphical Features from Derivatives

When given a function formula, we often find the first and second derivative
formulas to determine behaviors of the given function. In a later lab we will
use the first and second derivative formulas to help us graph a function given
the formula for the function. One thing we do with the derivative formulas is
determine where they are positive, negative, zero, and undefined. This helps
us determine where the given function is increasing, decreasing, concave up,
concave down, and linear.

Exercises

In the next few exercises, you will construct a function and then answer questions
about it.

Interval f ′ f ′′

(−∞,−1) Positive Negative
(−1,∞) Positive Positive
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Table 4.6.1: Signs on f ′ and f ′′ Figure 4.6.2: y = f(x)

Draw onto Figure 4.6.2 a continuous function f that has a horizontal
tangent line at the point (−1, 2) along with the properties stated in
Table 4.6.1.

1.

Given the conditions stated in Exercise 1, does it have to be the case
that f ′′(−1) = 0?

2.
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Is f increasing at −1? How do you know?3.

Can a continuous, everywhere differentiable function satisfy the proper-
ties stated in Table 4.6.1 and not have a slope of zero at −1? Draw a
picture that supports your answer.

4.

In the next few exercises, you will construct a function and then answer questions
about it.

Interval g′ g′′

(−∞,−1) Positive Positive
(−1,∞) Positive Negative
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Table 4.6.3: Signs on g′ and g′′ Figure 4.6.4: y = g(x)

Draw onto Figure 4.6.4 a continuous function g that has a vertical tan-
gent line at the point (−1, 2) along with the properties stated in Ta-
ble 4.6.3.

5.

Given the conditions stated in Exercise 5, does it have to be the case
that g′′(−1) is undefined?

6.

Is g increasing at −1? How do you know?7.

Can a continuous, everywhere differentiable function satisfy the proper-
ties stated in Table 4.6.3 and not have a vertical tangent line at 1? Draw
a picture that supports your answer.

8.

In the next few exercises, you will construct a function and then answer questions
about it.
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Interval k′ k′′

(−∞,−1) Negative Positive
(−1,∞) Positive Negative
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Table 4.6.5: Signs on k′ and k′′ Figure 4.6.6: y = k(x)

Draw onto Figure 4.6.6 the graph of a continuous function k that passes
through the point (−1, 2) and also satisfies the properties stated in Ta-
ble 4.6.5.

9.

At what values of x is k nondifferentiable?10.

You should know by now that the first derivative continually increases over
intervals where the second derivative is constantly positive and that the first
derivative continually decreases over intervals where the second derivative is
constantly negative. A person might infer from this that a function changes
more and more quickly over intervals where the second derivative is constantly
positive and that a function changes more and more slowly over intervals where
the second derivative is constantly negative. We are going to explore that idea
in this problem.

Suppose that V (t) is the volume of water in an ice cube (mL) where
t is the amount of time that has passed since noon (measure in min-
utes). Suppose that V ′(6) = 0 ml

min and that V ′′(t) has a constant value of
−0.3

ml/min
min over the interval [6, 11]. What is the value of V ′(11)? When

is V changing more quickly, at 12:06 pm or at 12:11 pm?

11.
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Referring to the function V in Exercise 11, what would the shape of V
be over the interval [6, 11]? (Choose from options 4.6.7(a)–4.6.7(d).)

(a) (b) (c) (d)

Figure 4.6.7:

12.

Again referring to options 4.6.7(a)–4.6.7(d), which functions are chang-
ing more and more rapidly from left to right and which functions are
changing more and more slowly from left to right? Which functions
have positive second derivatives and which functions have negative sec-
ond derivatives? Do the functions with positive second derivative values
both change more and more quickly from left to right?

13.

Consider the signs on both the first and second derivatives in options
4.6.7(a)–4.6.7(d). Is there something that the two functions that change
more and more quickly have in common that is different in the functions
that change more and more slowly?

14.

Resolve each of the following disputes.

One day Sara and Jermaine were working on an assignment. One ques-
tion asked them to draw a function over the domain (−2,∞) with the
properties that the function is always increasing and always concave
down. Sara insisted that the curve must have a vertical asymptote at −2
and Jermaine insisted that the function must have a horizontal asymp-
tote somewhere. Were either of these students correct?

15.

The next question Sara and Jermaine encountered described the same
function with the added condition that the function is never positive.
Sara and Jermaine made the same contentions about asymptotes. Is one
of them now correct?

16.

At another table Pedro and Yoshi were asked to draw a continuous curve
that, among other properties, was never concave up. Pedro said “OK,
so the curve is always concave down” to which Yoshi replied “Pedro, you
need to open your mind to other possibilities.” Who’s right?

17.
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In the next problem Pedro and Yoshi were asked to draw a function that
is everywhere continuous and that is concave down at every value of x
except 3. Yoshi declared “impossible” and Pedro responded “have some
faith, Yosh-man.” Pedro then began to draw. Is it possible that Pedro
came up with such a function?

18.

Determine the correct answer to each of the following questions. Pictures of the
situation may help you determine the correct answers.

Which of the following propositions is true? If a given proposition is not
true, draw a graph that illustrates its untruth.

(a) If the graph of f has a verti-
cal asymptote, then the graph
of f ′ must also have a vertical
asymptote.

(b) If the graph of f ′ has a verti-
cal asymptote, then the graph
of f must also have a vertical
asymptote.

19.

Suppose that the function f is continuous, concave down, and is such
that f(7) = 5 and f ′(7) = 3. Which of the following is true?

(a) f(9) < 11

(b) f(9) = 11

(c) f(9) > 11

(d) There is not enough informa-
tion to determine the relation-
ship between f(9) and 11.

20.
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4.7 Supplement

Exercises

Sketch first derivatives of the functions shown in Exercises 4.7.1.1–3.
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3.

Figure 4.7.1 gives seven curves. For each statement below, identify the figure
letters that go along with the given statement. Assume each statement is being
made only in reference to the portion of the curves shown in each of the fig-
ures. Assume in all cases that the axes have the traditional positive/negative
orientation. The first question has been answered for you to help you get started.

(a) (b) (c) (d) (e) (f) (g)

Figure 4.7.1: Seven curves

Each of these functions is always increasing: 4.7.1(c), 4.7.1(d), 4.7.1(e)4.

The first derivative of each of these functions is always increasing.5.

The second derivative of each of these functions is always negative.6.

The first derivative of each of these functions is always positive.7.

Any antiderivative of each of these functions is always concave up.8.

The second derivative of each of these functions is always equal to zero.9.

Any antiderivative of each of these functions graphs to a line.10.

The first derivative of each of these functions is a constant function.11.

The second derivative of each of these functions is never positive.12.
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The first derivative of each of these functions must have a graph that is
a straight line.

13.

As water drains from a tank the drainage rate continually decreases over time.
Suppose that a tank that initially holds 360 gal of water drains in exactly 6
minutes. Answer each of the following questions about this problem situation.

Suppose that V (t) is the amount of water (gal) left in the tank where
t is the amount of time that has elapsed (s) since the drainage began.
What are the units on V ′(45) and V ′′(45)? Which of the following is the
most realistic value for V ′(45)?

(a) 0.8 (b) 1.2 (c) −0.8 (d) −1.2

14.

Suppose that R(t) is the water’s flow rate (gal
s ) where t is the amount of

time that has elapsed (s) since the drainage began. What are the units
on R′(45) and R′′(45)? Which of the following is the most realistic value
for R′(45)?

(a) 1.0 (b) 0.001 (c) −1.0 (d) −0.001

15.

Suppose that V (t) is the amount of water (gal)left in the tank where
t is the amount of time that has elapsed (s) since the drainage began.
Which of the following is the most realistic value for V ′′(45)?

(a) 1.0 (b) 0.001 (c) −1.0 (d) −0.001

16.

For each statement in Exercises 17–21, decide which of the following is true.

(a) The statement is true regardless of the specific function f .

(b) The statement is true for some functions and false for other functions.

(c) The statement is false regardless of the specific function f .

If a function f is increasing over the entire interval (−3, 7) and f ′(0)
exists, then f ′(0) > 0.

17.
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If a function f is increasing over the entire interval (−3, 7) and f ′(4)
exists, then f ′(4) = 0.

18.

If a function f is concave down over the entire interval (−3, 7) and f ′(−2)
exists, then f ′(−2) < 0.

19.

If the slope of f is increasing over the entire interval (−3, 7) and f ′(0)
exists, then f ′(0) > 0.

20.

If a function f has a local maximum at 3, then f ′(3) = 0.21.

For a certain function g, g′(t) = −8 at all values of t on (−∞,−3) and g′(t) = 2
at all values of t on (−3,∞).

Janice thinks that g must be discontinuous at −3 but Lisa disagrees.
Who’s right?

22.

Lisa thinks that the graph of g′′ is the line y = 0 but Janice disagrees.
Who’s right?

23.

Each statement below is in reference
to the function shown in Figure 4.7.2.
Decide whether each statement is
True or False. A caption has been
omitted from Figure 4.7.2 because the
identity of the curve changes from
question to question.
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Figure 4.7.2:

True or False? If the given function is f ′, then f(3) > f(2).24.

True or False? If the given function is f , then f ′(3) > f ′(2).25.

True or False? If the given function is f , then f ′(1) > f ′′(1).26.
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True or False? If the given function is f ′, then the tangent line to f at
6 is horizontal.

27.

True or False? If the given function is f ′, then f ′′ is always increasing.28.

True or False? If the given function is f ′, then f is not differentiable at
4.

29.

True or False? If the given function is f ′, then f ′ is not differentiable at
4.

30.

True or False? The first derivative of the given function is periodic
(starting at 0).

31.

True or False? Antiderivatives of the given function are periodic (starting
at 0).

32.

True or False? If the given function was measuring the rate at which
the volume of air in your lungs was changing t seconds after you were
frightened, then there was the same amount of air in your lungs 9 seconds
after the fright as was there 7 seconds after the fright.

33.

True or False? If the given function is measuring the position of a weight
attached to a spring relative to a table edge (with positive and negative
positions corresponding to the weight being above and below the edge
of the table), then the weight is in the same position 9 seconds after it
begins to bob as it is 7 seconds after the bobbing commenced (assuming
that t represents the number of seconds that pass after the weight begins
to bob).

34.

True or False? If the given function is measuring the velocity of a weight
attached to a spring relative to a table edge (with positive and negative
positions corresponding, respectively, to the weight being above and be-
low the edge of the table), then the spring was moving downward over
the interval (1, 3) (assuming that t represents the number of seconds that
pass after the weight begins to bob).

35.

36. Complete as many cells in Table 4.7.3 as possible so that when read left to
right the relationships between the derivatives, function, and antiderivative are
always true. Please note that several cells will remain blank.
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Table 4.7.3:

f ′′ f ′ f F

Positive
Negative

Constant Zero
Increasing
Decreasing
Constant

Concave Up
Concave Down

Linear

Answer each question about the func-
tion f whose first derivative is shown
in Figure 4.7.4. The correct answer to
one or more of the questions may be
“there’s no way of knowing.”
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Figure 4.7.4: y = f ′(x)

Where, over (−6, 6), is f ′ nondifferentiable?37.
Where, over (−6, 6), are antiderivatives of f nondifferentiable?38.
Where, over (−6, 6), is f decreasing?39.
Where, over (−6, 6), is f concave down?40.
Where, over (−6, 6), is f ′′ decreasing?41.
Where, over (−6, 6), is f ′′ positive?42.
Where, over (−6, 6), are antiderivatives of f concave up?43.
Where, over (−6, 6), are antiderivatives of f concave up?44.
Where, over (−6, 6), does f have its maximum value?45.
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Suppose f(−3) = 14. What is the equation of the tangent line to f at
−3?

46.

47. A certain antiderivative, F , of the function f shown in Figure 4.7.5 passes
through the points (3,−2) and about (−3, 5.6). Draw this antiderivative (over
the interval (−6, 6)) onto the provided graph.
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Figure 4.7.5: y = f(x) Figure 4.7.6: y = F (x)

48. Draw onto Figure 4.7.7 the function f given the following properties of
f .

The only discontinuity on f occurs at the
vertical asymptote x = 2.

f(0) = f(4) = 3

f ′(−1) = 0

f ′(x) > 0 on (−∞,−1) ∪ (−1, 2) ∪ (4,∞)

f ′(x) < 0 on (2, 4)

f ′′(x) > 0 on (−1, 2) ∪ (2, 4)

f ′′(x) < 0 on (−∞,−1)

f ′′(x) = 0 on (4,∞)

lim
x→4−

f ′(x) = −1

lim
x→4+

f ′(x) = 1
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Figure 4.7.7: y = f(x)
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Lab 5

Derivative Formulas

5.1 Leibniz Notation

While the primary focus of this lab is to help you develop shortcut skills for
finding derivative formulas, there are inevitable notational issues that must be
addressed. It turns out that the latter issue is the one we are going to address
first.

Definition 5.1.1 (Leibniz Notation). If y = f(x), we say that the derivative of
y with respect to x is equal to f ′(x). Symbolically, we write dy

dx
= f ′(x).

While the symbol dy
dx

certainly looks like a fraction, it is not a fraction. The
symbol is Leibniz notation for the first derivative of y with respect to x. The
short way of reading the symbol aloud is “d y d x.”
If z = g(t), we say that the the derivative of z with respect to t is equal to g′(t).
Symbolically, we write dz

dt
= g′(t). (Read aloud as “d z d t equals g prime of t.”)

Exercises

Take the derivative of both sides of each equation with respect to the independent
variable as indicated in the function notation. Write and say the derivative using
Leibniz notation on the left side of the equal sign and function notation on the
right side of the equal sign. Make sure that every one in your group says at least
one of the derivative equations aloud using both the formal reading and informal
reading of the Leibniz notation.

y = k(t)1. V = f(r)2. T = g(P )3.

73
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5.2 The Derivative Operator

dy
dx

is the name of a derivative in the same way that f ′(x) is the name of a
derivative. We need a different symbol that tells us to take the derivative of a
given expression (in the same way that we have symbols that tell us to take a
square root, sine, or logarithm of an expression).
The symbol d

dx
is used to tell us to take the derivative with respect to x of

something. The symbol itself is an incomplete phrase in the same way that the
symbol

√
is an incomplete phrase; in both cases we need to indicate the object

to be manipulated—what number or formula are we taking the square root of?
What number or formula are we differentiating?
One thing you can do to help you remember the difference between the symbols
dy
dx

and d
dx

is to get in the habit of always writing grouping symbols after d
dx

. In
this way the symbols d

dx
(sin(x)) mean “the derivative with respect to x of the

sine of x.” Similarly, the symbols d
dt
(t2) mean “the derivative with respect to t

of t-squared.”

Exercises

Write the Leibniz notation for each of the following expressions.

The derivative with respect to β of cos(β).1.

The derivative with respect to x of dy
dx

.2.

The derivative with respect to t of ln(x). (Yes, we will do such things.)3.

The derivative of z with respect to x.4.

The derivative with respect to t of g(8). (Yes, we will also do such
things.)

5.

5.3 The Power Rule

The first differentiation rule we are going to explore is called the power rule
of differentiation.

d

dx
(xn) = nxn−1 (5.3.1)

When n is a positive integer, it is fairly easy to establish this rule using Def-
inition 3.3.1. The proof of the rule gets a little more complicated when n is
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negative, fractional, or irrational. For purposes of this lab, we are going to just
accept the rule as valid.
This rule is one you just “do in your head” and then write down the result.
Three examples of what you would be expected to write when differentiating
power functions are shown in Table 5.3.1.

Table 5.3.1: Examples of the Power Rule

Given function y = x7 f(t) =
3
√
t7 z = 1

y5

You should “see” f(t) = t7/3 z = y−5

You should write dy
dx

= 7x6 f ′(t) =
7

3
t
4/3

=
7

3

3
√
t4

dz

dy
= −5y−6

= − 5

y6

Notice that the type of notation used when naming the derivative is dictated by
the manner in which the original function is expressed. For example, y = x7 is
telling us the relationship between two variables; in this situation we name the
derivative using the notation dy

dx
. On the other hand, function notation is being

used to name the rule in f(t) =
3
√
t7; in this situation we name the derivative

using the function notation f ′(t).

Exercises

Find the first derivative formula for each of the following functions. In each case
take the derivative with respect to the independent variable as implied by the
expression on the right side of the equal sign. Make sure to use the appropriate
name for each derivative.

f(x) = x431. z =
1

t7
2. P =

5
√
t23. h(x) =

1√
x

4.

5.4 The Constant Factor Rule

The next rule you are going to practice is the constant factor rule of differ-
entiation. This is another rule you do in your head.

d

dx
(k f(x)) = k · d

dx
(f(x)) for k ∈ R. (5.4.1)
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In the following examples and problems several derivative rules are used that are
shown in Appendix B. While working this lab you should refer to those rules;
you may want to cover up the chain rule and implicit derivative columns this
week! You should make a goal of having all of the basic formulas memorized
within a week.

Table 5.4.1: Examples of the Constant Factor Rule

Given function f(x) = 6x9 f(θ) = 2 cos(θ) z = 2 ln(x)
You should write f ′(x) = 54x8 f ′(θ) = −2 sin(θ) dz

dx
= 2

x

Exercises

Find the first derivative formula for each of the following functions. In each case
take the derivative with respect to the independent variable as implied by the
expression on the right side of the equal sign. Make sure to use the appropriate
name for each derivative.

z = 7t41. P (x) = −7 sin(x)2.
h(t) = 1

3
ln(t)3. z(x) = π tan(x)4.

P =
−8

t4
5. T = 4

√
t6.

5.5 The Constant Divisor Rule

When an expression is divided by the constant k, we can think of the expression
as being multiplied by the fraction 1

k
. In this way, the constant factor rule

of differentiation can be applied when a formula is multiplied or divided by a
constant.

Table 5.5.1: Examples of the Constant Divisor Rule

Given function f(x) = x4

8
y = 3 tan(α)

2
z = ln(y)

3

You should “see” f(x) = 1
8
x4 y = 3

2
tan(α) z = 1

3
ln(y)

You should write f ′(x) = 1
2
x3 dy

dα
= 3

2
sec2(α) dz

dy
= 1

3y

Exercises

Find the first derivative formula for each of the following functions. In each
case take the derivative with respect to the independent variable as implied by
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the expression on the right side of the equal sign. Make sure that you use the
appropriate name for each derivative. In the last problem, G, m1, and m2 are
constants.

z(t) =
sin−1(t)

6
1. V (r) =

πr3

3
2. f(r) =

Gm1m2

r2
3.

5.6 The Sum and Difference Rules

When taking the derivative of two or more terms, you can take the derivatives
term by term and insert plus or minus signs as appropriate. Collectively we call
this the sum and difference rules of differentiation.

d

dx
(f(x)± g(x)) =

d

dx
(f(x))± d

dx
(g(x)) (5.6.1)

In the following examples and problems we introduce linear and constant terms
into the functions being differentiated.

d

dx
(k) = 0 for k ∈ R (5.6.2)

d

dx
(kx) = k for k ∈ R (5.6.3)

Table 5.6.1: Examples of the Sum and Difference Rules

Given function y = 4
5
√
t6 − 1

6
√
t
+ 8t P (γ) = sin(γ)−cos(γ)

2
+ 4

You should “see” y = 4t
6
5 − 1

6
t−

1
2 + 8t P (γ) = 1

2
sin(γ)− 1

2
cos(γ) + 4

You should write dy

dt
= 24

5
t
1
5 + 1

12
t−

3
2 + 8

= 24 5√t
5

+ 1

12
√
t3
+ 8

P ′(γ) = 1
2

cos(γ) + 1
2

sin(γ)

Exercises

1. Explain why both the constant rule ((5.6.2)) and linear rule ((5.6.3)) are
“obvious.” Hint: think about the graphs y = k and y = kx. What does a first
derivative tell you about a graph?

Find the first derivative formula for each of the following functions. In each
case take the derivative with respect to the independent variable as implied by
the expression on the right side of the equal sign. Make sure that you use the
appropriate name for each derivative.
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T = sin(t)− 2 cos(t) + 32. k(θ) =
4 sec(θ)− 3 csc(θ)

4
3.

r(x) =
x

5
+ 74. r =

x

3 3
√
x
− ln(x)

9
+ ln(2)5.

5.7 The Product Rule

The next rule we are going to explore is called the product rule of differen-
tiation. We use this rule when there are two or more variable factors in the
expression we are differentiating. (Remember, we already have the constant
factor rule to deal with two factors when one of the two factors is a constant.)

d

dx
(f(x)g(x)) =

d

dx
(f(x)) · g(x) + f(x) · d

dx
(g(x)) (5.7.1)

Intuitively, what is happening in this rule is that we are alternately treating one
factor as a constant (the one not being differentiated) and the other factor as a
variable function (the one that is being differentiated). We then add these two
rates of change together.
Ultimately, you want to perform this rule in your head just like all of the other
rules. Your instructor, however, may initially want you to show steps; under
that presumption, steps are going to be shown in each and every example of this
lab when the product rule is applied. Two simple examples of the product rule
are shown in Table 5.7.1.

Table 5.7.1: Examples of the Product Rule

Given function Derivative

y(x) = x2 sin(x) y′(x) =
d

dx

(
x2
)
· sin(x) + x2 · d

dx
(sin(x))

= 2x sin(x) + x2 cos(x)

P = et cos(t) dP

dt
=

d

dt

(
et
)
· cos(t) + et · d

dt
(cos(t))

= et cos(t)− et sin(t)

A decision you’ll need to make is how to handle a constant factor in a term
that requires the product rule. Two options for taking the derivative of f(x) =
5x2 ln(x) are shown in Figure 5.7.2.
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Option A Option B

f ′(x) = 5

[
d

dx

(
x2
)

ln(x) + x2 d

dx
(ln(x))

]
= 5

[
2x ln(x) + x2 · 1

x

]
= 10x ln(x) + 5x

f ′(x) =
d

dx

(
5x2
)

ln(x) + 5x2 d

dx
(ln(x))

= 10x ln(x) + 5x2 · 1
x

= 10x ln(x) + 5x

Figure 5.7.2:

In Option B we are treating the factor of 5 as a part of the first variable factor.
In doing so, the factor of 5 distributes itself. This is the preferred treatment of
the author, so this is what you will see illustrated in this lab.

Exercises

Find the first derivative formula for each of the following functions. In each
case take the derivative with respect to the independent variable as implied by
the expression on the right side of the equal sign. Make sure that you use the
appropriate name for each derivative.

T (t) = 2 sec(t) tan(t)1. k =
et
√
t

2
2.

y = 4x ln(x) + 3x − x33. f(x) = cot(x) cot(x)− 14.

Find each of the following derivatives without first simplifying the formula; that
is, go ahead and use the product rule on the expression as written. Simplify each
resultant derivative formula. For each derivative, check your answer by simpli-
fying the original expression and then taking the derivative of that simplified
expression.

d
dx
(x4x7)5. d

dx
(x · x10)6. d

dx

(√
x
√
x21
)

7.

5.8 The Quotient Rule

The next rule we are going to explore is called the quotient rule of differentia-
tion. We never use this rule unless there is a variable factor in the denominator of
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the expression we are differentiating. (Remember, we already have the constant
factor/divisor rule to deal with constant factors in the denominator.)

d

dx

(
f(x)

g(x)

)
=

d
dx
(f(x)) · g(x)− f(x) · d

dx
(g(x))

[g(x)]2
(5.8.1)

Like all of the other rules, you ultimately want to perform the quotient rule in
your head. Your instructor, however, may initially want you to show steps when
applying the quotient rule; under that presumption, steps are going to be shown
in each and every example of this lab when the quotient rule is applied. Two
simple examples of the quotient rule are shown in Table 5.8.1.

Table 5.8.1: Examples of the Quotient Rule

Given function Derivative

y =
4x3

ln(x)
dy

dx
=

d
dx
(4x3) · ln(x)− 4x3 · d

dx
(ln(x))

[ln(x)]2

=
12x2 · ln(x)− 4x3 · 1

x

[ln(x)]2

=
12x2 ln(x)− 4x2

[ln(x)]2

V =
csc(t)
tan(t)

dV

dt
=

d
dt
(csc(t)) · tan(t)− csc(t) · d

dt
(tan(t))

tan2(t)

=
− csc(t) cot(t) tan(t)− csc(t) sec2(t)

tan2(t)

=
− csc(t) (1 + sec2(t))

tan2(t)

Exercises

Find the first derivative formula for each of the following functions. In each
case take the derivative with respect to the independent variable as implied by
the expression on the right side of the equal sign. Make sure that you use the
appropriate name for each derivative.

g(x) =
4 ln(x)

x
1. j(y) =

3
√

y5

cos(y)2.

y =
sin(x)
4 sec(x)3. f(t) =

t2

et
4.
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Find each of the following derivatives without first simplifying the formula; that
is, go ahead and use the quotient rule on the expression as written. For each
derivative, check your answer by simplifying the original expression and then
taking the derivative of that simplified expression.

d

dt

(
sin(t)
sin(t)

)
5. d

dx

(
x6

x2

)
6. d

dx

(
10

2x

)
7.

5.9 Simplification

In Activity 5.7 Exercises 5.7.1.5–7 and Activity 5.8 Exercises 5.8.1.5–7 you ap-
plied the product and quotient rules to expressions where the derivative could
have been found much more quickly had you simplified the expression before
taking the derivative. For example, while you can find the correct derivative
formula using the quotient rule when working Exercise 7, the derivative can be
found much more quickly if you simplify the expression before applying the rules
of differentiation. This is illustrated in Example 5.9.1.

Example 5.9.1.

d

dx

(
10

2x

)
=

d

dx

(
5x−1

)
= −5x−2

= − 5

x2

Part of learning to take derivatives is learning to make good choices about the
methodology to employ when taking derivatives. In Examples 5.9.2 and 5.9.3,
the need to use the product rule or quotient rule is obviated by first simplifying
the expression being differentiated.

Example 5.9.2.

Find dy

dx
if y = sec(x) cos(x). y = sec(x) cos(x)

=
1

cos(x) cos(x)

= 1

dy

dx
= 0

Note that since y is undefined for x = π
2
+ kπ with k ∈ Z, dy

dx
is also undefined

at such x-values.
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Example 5.9.3.

Find f ′(t) if f(t) = 4t5 − 3t3

2t2
. f(t) =

4t5 − 3t3

2t2

=
4t5

2t2
− 3t3

2t2

= 2t3 − 3

2
t

f ′(t) = 6t2 − 3

2

=
12t2 − 3

2

Note that since f is undefined at 0, f ′ is also undefined at 0.

Exercises

Find the derivative with respect to x for each of the following functions after first
completely simplifying the formula being differentiated. In each case you should
not use either the product rule or the quotient rule while finding the derivative
formula.

y =
4x12 − 5x4 + 3x2

x4
1. g(x) =

−4 sin(x)
cos(x)2.

h(x) =
4− x6

3x−2
3. z(x) = sin2(x) + cos2(x)4.

z = (x+ 4)(x− 4)5. T (x) =
ln(x)
ln(x2)

6.

5.10 Product and Quotient Rules Together

Sometimes both the product rule and quotient rule need to be applied when
finding a derivative formula.

Exercises

Consider the functions defined by

f(x) = x2 sin(x)
ex

g(x) =
x2 sin(x)

ex
.
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Discuss why f and g are in fact two representations of the same function.1.

Find f ′(x) by first applying the product rule and then applying the
quotient rule (where necessary).

2.

Find g′(x) by first applying the quotient rule and then applying the
product rule (where necessary).

3.

Rigorously establish that the formulas for f ′(x) and g′(x) are indeed the
same.

4.

5.11 Derivative Formulas and Function Behav-
ior

Derivative formulas can give us much information about the behavior of a func-
tion. For example, the derivative formula for f(x) = x2 is f ′(x) = 2x. Clearly
f ′ is negative when x is negative and f ′ is positive when x is positive. This tells
us that f is decreasing when x is negative and that f is increasing when x is
positive. This matches the behavior of the parabola y = x2.

Exercises

The amount of time (seconds), T , required for a pendulum to complete one
period is a function of the pendulum’s length (meters), L. Specifically, T =

2π
√

L
g

where g is the gravitational acceleration constant for Earth (roughly
9.8 m

s2 ).

Find dT
dL

after first rewriting the formula for T as a constant times
√
L.1.

The sign on dT
dL

is the same regardless of the value of L. What is this sign
and what does it tell you about the relative periods of two pendulums
with different lengths?

2.

The gravitational force (Newtons) between two objects of masses m1 and m2

(kg) is a function of the distance (meters) between the objects’ centers of mass,
r. Specifically, F (r) = Gm1m2

r2
where G is the universal gravitational constant

(which is approximately 6.7× 10−11 N m2

kg2 .)

Leaving G, m1, and m2 as constants, find F ′(r) after first rewriting the
formula for F as a constant times a power of r.

3.
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The sign on F ′(r) is the same regardless of the value of r. What is this
sign and what does it tell you about the effect on the gravitational force
between two objects when the distance between the objects is changed?

4.

Find each of F ′(1.00× 1012), F ′(1.01× 1012), and F ′(1.02× 1012), leav-
ing G, m1, and m2 as constants.

5.

Calculate F(1.02×1012)−F(1.00×1012)
1.02×1012−1.00×1012

. Which of the quantities found in Ex-
ercise 5 comes closest to this value? Draw a sketch of F and discuss why
this result makes sense.

6.
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5.12 Supplement

Exercises

Apply the constant factor and power rules to find the first derivative of each
of the following functions. In each case take the derivative with respect to the
variable suggested by the expression on the right side of the equation. Make
sure that you assign the proper name to the derivative function. Please note
that there is no need to employ either the quotient rule or the product rule to
find any of these derivative formulas.

f(x) =
11
√
x6

6
1. y = − 5

t7
2. y(u) = 12 3

√
u3.

z(α) = eαπ4. z =
8√
t7

5. T =
4

3
√
t7

t2
6.

Apply the constant factor and product rules to find the first derivative of each
of the following functions. Write out the Leibniz notation for the product rule
as applied to the given function. In each case take the derivative with respect to
the variable suggested by the expression on the right side of the equation. Make
sure that you assign the proper name to the derivative function.

y = 5 sin(x) cos(x)7. y =
5t2et

7
8.

F (x) = 4x ln(x)9. z = x2 sin−1(x)10.

T (t) = (t2 + 1) tan−1(t)11. T =
x77x

3
12.

Apply the constant factor and quotient rules to find the first derivative of each
of the following functions. Write out the Leibniz notation for the quotient rule
as applied to the given function. In each case take the derivative with respect to
the variable suggested by the expression on the right side of the equation. Make
sure that you assign the proper name to the derivative function.

q(θ) =
4eθ

eθ + 1
13. u(x) = 2

ln(x)
x4

14.

F =

√
t

3t2 − 5
√
t3

15. F (x) =
tan(x)

tan−1(x)
16.

p =
tan−1(t)

1 + t2
17. y =

4

sin(β)− 2 cos(β)18.
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Multiple applications of the product rule are required when finding the derivative
formula of the product of three of more functions. After simplification, however,
the predictable pattern shown below emerges.

d

dx
(fg) =

d

dx
(f)g + f

d

dx
(g)

d

dx
(fgh) =

d

dx
(f)gh+ f

d

dx
(g)h+ fg

d

dx
(h)

d

dx
(fghk) =

d

dx
(f)ghk + f

d

dx
(g)hk + fg

d

dx
(h)k + fgh

d

dx
(k)

Apply the product rule twice to the expression d
dx
(f(x)g(x)h(x)) to ver-

ify the formula stated above for the product of three functions. The
first application of the product rule is shown below to help you get you
started.

d

dx
(f(x)g(x)h(x)) =

d

dx
(f(x) · [g(x)h(x)])

19.

Apply the formula shown for the product of four functions to determine
the derivative with respect to x of the function p defined by p(x) =
x2ex sin(x) cos(x).

20.

Find the first derivative with respect to x for each of the following functions and
for each function find the equation of the tangent line at the stated value of x.
Make sure that you use appropriate techniques of differentiation.

f(x) =
x3 + x2

x
; tangent line at 521.

h(x) =
x

1 + x
; tangent line at −222.

K(x) =
1 + x

2x+ 2
; tangent line at 823.

r(x) = 3 3
√
xex; tangent line at 024.

25. Find the second derivative of y with respect to t if y = 4
√
t t5. Make sure

that you use appropriate techniques of differentiation and that you use proper
notation on both sides of the equal sign.
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A function f is shown in Fig-
ure 5.12.1. Each question below is in
reference to this function. Please note
that the numeric endpoints of each in-
terval answer are all integers.

−8 −6 −4 −2 2 4 6 8

20

40

60

80

100

120

140

160

x

y

Figure 5.12.1: y = f(x)

Over what intervals is f ′ positive? Over what intervals is f ′ negative?26.

Over what intervals is f ′ increasing? Over what intervals is f ′ decreasing?27.

Over what intervals is f ′′ positive? Over what intervals is f ′′ negative?28.

The formula for f is f(x) = x3

3
+ 3x2 − 16x. Find the formulas for

f ′ and f ′′, and then graph the derivatives and verify your answers to
Exercises 5.12.1.26–29.

29.

A function g is shown in Figure 5.12.2.
Each question below is in reference to this
function.

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−6

−4

−2

2

4

6

t

y

Figure 5.12.2: y = g(t)

Where over the interval [0, 2π] does g′(t) = 0? Please note that the
t-scale in Figure 5.12.2 is π

12
.

30.
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The formula for g is g(t) = 3 sin(t) + 3 sin2(t)− 5. Find the formula for
g′ and use that formula to solve the equation g′(t) = 0 over the interval
[0, 2π]. Compare your answers to those found in Exercise 30.

31.

32. Find the equation of the tangent line to f ′ at π if f(x) = sin(2x).

In Table 5.12.3 several function and derivative values are given for the functions
f and g. The exercises that follow are based upon these two functions.

Table 5.12.3: Various values for derivatives of f and g

x f(x) f ′(x) f ′′(x) g(x) g′(x) g′′(x)

0 2 −1 −2 −3 −3 −2

1 1 0 4 −5 2 16

2 4 7 10 11 37 58

3 15 20 16 87 126 124

4 46 39 22 289 293 214

Suppose that you were asked to find the value of h′(2) where h(x) = f(x)g(x).
The first thing you would need to do is find a formula for h′(x). You would then
replace x with 2, substitute the appropriate function and derivative values, and
simplify. This is illustrated below.

h′(x) =
d

dx
(f(x))g(x) + f(x)

d

dx
(g(x))

= f ′(x)g(x) + f(x)g′(x)

h′(2) = f ′(2)g(2) + f(2)g′(2)

= 7(11) + 4(37)

= 225

Following the process outlined in this example, find each of the following.

Find h′(4), where h(x) = f(x)g(x).33.
Find h′′(2), where h(x) = f(x)g(x).34.

Find k′(3), where k(x) =
g(x)

f(x)
.35.

Find p′(4), where p(x) = 6
√
xf(x).36.

Find r′(1), where r(x) = (g(x))2.37.
Find s′(2), where s(x) = xf(x)g(x).38.
Find F ′(4), where F (x) =

√
xg(4).39.

Find T ′′(0), where T (x) =
f(x)

ex
.40.
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Lab 6

The Chain Rule

6.1 Introduction to the Chain Rule

The functions f(t) = sin(t) and
k(t) = sin(3t) are shown in Fig-
ure 6.1.1. Since f ′(t) = cos(t), it is
reasonable to speculate that k′(t) =
cos(3t). But this would imply that
k′(0) = f ′(0) = 1, and a quick glance
of the two functions at 0 should con-
vince you that this is not true; clearly
k′(0) > f ′(0).

−π −π
2

π
2

π 3π
2

2π

−2

−1

1

2

t

y f
k

Figure 6.1.1: y = f(t) and y = k(t)

The function k moves through three periods for every one period generated by
the function f . Since the amplitudes of the two functions are the same, the only
way k can generate periods at a rate of 3 : 1 (compared to f) is if its rate of
change is three times that of f . In fact, k′(t) = 3 cos(3t); please note that 3 is
the first derivative of 3t. This means that the formula for k′(t) is the product of
the rates of change of the outside function ( d

du
(sin(u)) = cos(u)) and the inside

function ( d
dt
(3t) = 3).

k is an example of a composite func-
tion (as illustrated in (6.1.1)). If we
define g by the rule g(t) = 3t, then
k(t) = f(g(t)).

t
g−→ 3t

f−→ sin(3t) (6.1.1)

g(t) = 3t

f(u) = sin(u)
k(t) = f(g(t))

91
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Taking the output from g and processing it through a second function, f , is the
action that characterizes k as a composite function.
Note that k′(0) = g′(0)f ′(g(0)). This last equation is an example of what we
call the chain rule for differentiation. Loosely, the chain rule tells us that when
finding the rate of change for a composite function (at 0), we need to multiply
the rate of change of the outside function, f ′(g(0)), with the rate of change of
the inside function, g′(0). This is symbolized for general values of x in (6.1.2)
where u represents a function of x (e.g. u = g(x)).

d

dx
(f(u)) = f ′(u)

d

dx
(u) (6.1.2)

This rule is used to find derivative formulas in Examples 6.1.2 and 6.1.3.

Example 6.1.2.

Problem Solution

Find dy

dx
if y = sin

(
x2
)
. dy

dx
= cos

(
x2
)
· d

dx

(
x2
)

= cos
(
x2
)
· 2x

= 2x cos
(
x2
)

The factor of d
dx
(x2) is called a chain rule factor.
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Example 6.1.3.

Problem Solution
Find f ′(t) if f(t) = sec9(t). f(t) = [sec(t)]9

f ′(t) = 9 [sec(t)]8 · d

dt
(sec(t))

= 9 sec8(t) · sec(t) tan(t)
= 9 sec9(t) tan(t)

The factor of d
dt
(sec(t)) is called a chain rule factor.

Example 6.1.4.

Problem Solution

Find dy

dx
if y = 4x. dy

dx
= ln(4) · 4x

Please note that the chain rule was not applied here because the function being
differentiated was not a composite function. Here we just applied the formula
for the derivative of an exponential function with base 4.

Example 6.1.5.

Problem Solution

Find dy

dx
if y = 4x y = eln(4)x

= (eln(4))x
dy

dx
= eln(4)x · d

dx
(ln(4)x)

= eln(4)x. = eln(4)x · ln(4).
= ln(4) · 4x

While this is the same task as in Example 6.1.4, here we view the function as a
composite function, and apply the chain rule.

While you ultimately want to perform the chain rule step in your head, your
instructor may want you to illustrate the step while you are first practicing the
rule. For this reason, the step will be explicitly shown in every example given in
this lab.

Exercises

Find the first derivative formula for each function. In each case take the deriva-
tive with respect to the independent variable as implied by the expression on
the right side of the equal sign. Make sure that you use the appropriate name
for each derivative (e.g. h′(t)).
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h(t) = cos
(√

t
)

1. P = sin(θ4)2. w(α) = cot( 3
√
α)3.

z = 7 [ln(t)]34. z(θ) = sin4(θ)5. P (β) = tan−1(β)6.

y =
[
sin−1(t)

]177. T = 2ln(x)8. y(x) = sec−1(ex)9.

A function, f , is shown in Fig-
ure 6.1.6. Answer the following ques-
tions in reference to this function.

−1 1

−3

−2

−1

1

2

3

t

y

Figure 6.1.6: y = f(t)

Use the graph to rank the following in decreasing order: f(1), f ′(1),
f ′′(1), f ′(0), and f ′(−1).

10.

The formula for f is f(t) = t et − et
2
+ 3. Find the formulas for f ′ and

f ′′ and use the formulas to verify your answer to Exercise 10.
11.

Find the equation to the tangent line to f at 0.12.
Find the equation to the tangent line to f ′ at 0.13.
There is an antiderivative of f that passes through the point (0, 7). Find
the equation of the tangent line to this antiderivative at 0.

14.

6.2 Order to Apply Rules

When finding derivatives of complex formulas you need to apply the rules for
differentiation in the reverse of order of operations. For example, when finding
d
dx
(sin(x ex)) the first rule you need to apply is the derivative formula for sin(u)

but when finding d
dx
(x sin(ex)) the first rule that needs to be applied is the

product rule.
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Exercises

Find the first derivative formula for each function. In each case take the deriva-
tive with respect to the independent variable as implied by the expression on
the right side of the equal sign. Make sure that you use the appropriate name
for each derivative (e.g. f ′(x)).

f(x) = sin(x ex)1. g(x) = x sin(ex)2.

y =
tan(ln(x))

x
3. z = 5t+

cos2(t2)
3

4.

f(y) = sin
(

ln(y)
y

)
5. G = x sin−1(x ln(x))6.

6.3 Not Simplifying First

As always, you want to simplify an expression before jumping in to take its
derivative. Nevertheless, it can build confidence to see that the rules work even
if you don’t simplify first.

Exercises

Consider the functions f(x) =
√
x2 and g(x) = (

√
x)

2.

Assuming that x is not negative, how does each of these formulas sim-
plify? Use the simplified formula to find the formulas for f ′(x) and g′(x).

1.

Use the chain rule (without first simplifying) to find the formulas for
f ′(x) and g′(x); simplify each result (assuming that x is positive).

2.

Are f and g the same function? Explain why or why not.3.

4. So long as x falls on the interval
(
−π

2
, π
2

)
, tan−1(tan(x)) = x. Use the chain

rule to find d
dx
(tan−1(tan(x))) and show that it simplifies as it should.

5. How does the formula g(t) = ln(e5t) simplify and what does this tell you
about the formula for g′(t)? After answering those questions, use the chain rule
to find the formula for g′(t) and show that it simplifies as it should.

Consider the function g(t) = ln
(

5
t3 sec(t)

)
.
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Find the formula for g′(t) without first simplifying the formula for g(t).6.

Use the quotient, product, and power rules of logarithms to expand the
formula for g(t) into three logarithmic terms. Then find g′(t) by taking
the derivative of the expanded version of g.

7.

Show the two resultant fomulas are in fact the same. Also, reflect upon
which process of differentiation was less work and easier to “clean up.”

8.

6.4 Chain Rule with Leibniz Notation

So far we have worked with the chain rule as expressed using function notation.
In some applications it is easier to think of the chain rule using Leibniz notation.
Consider the following example.

Example 6.4.1. During the 1990s, the amount of electricity used per day in
Etown increased as a function of population at the rate of 18 kW/person. On
July 1, 1997, the population of Etown was 100,000 and the population was de-
creasing at a rate of 6 people/day. In (6.4.1) we use these values to determine
the rate at which electrical usage was changing (with respect to time) in Etown
on 7/1/1997. Please note that in this extremely simplified example we are ignor-
ing all factors that contribute to citywide electrical usage other than population
(such as temperature).(

18
kW

person

)(
−6

people
day

)
= −108

kW
day (6.4.1)

Let’s define g(t) as the population of Etown t years after January 1, 1990 and
f(u) as the daily amount of electricity used in Etown when the population was
u. From the given information, g(7.5) = 100,000, g′(7.5) = −6, and f ′(u) = 18
for all values of u. If we let y = f(u) where u = g(t), then we have (from (6.4.1)):(

dy

du

∣∣∣∣
u=100,000

)(
du

dt

∣∣∣∣
t=7.5

)
=

dy

dt

∣∣∣∣
t=7.5

. (6.4.2)

You should note that (6.4.2) is an application of the chain rule expressed in
Leibniz notation; specifically, the expression on the left side of the equal sign
represents f ′(g(7.5))g′(7.5).

In general, we could express the chain rule as shown in (6.4.3).

dy

dx
=

dy

du
· du
dx

(6.4.3)
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Exercises

Suppose that Carla is jogging in her sweet new running shoes. Suppose further
that r = f(t) is Carla’s pace (mph) t hours after 1:00 pm and y = h(r) is Carla’s
heart rate (bpm) when she jogs at a rate of r mph. In this context we can
assume that all of Carla’s motion was in one direction, so the words ‘speed’ and
‘velocity’ are completely interchangeable.

What is the meaning of f(0.75) = 7?1.

What is the meaning of h(7) = 125?2.

What is the meaning of (h ◦ f) (0.75) = 125?3.

What is the meaning of dr
dt

∣∣
t=0.75

= −0.00003?4.

What is the meaning of dy
dr

∣∣
r=7

= 8?5.

Assuming that all of the previous values are accurate, what is the value
of dy

dt

∣∣
t=0.75

and what does this value tell you about Carla?
6.

Portions of SW 35th Avenue are extremely hilly. Suppose that you are riding
your bike along SW 35th Ave from Vermont Street to Capitol Highway. Let
u = d(t) be the distance you have traveled (ft) where t is the number of seconds
that have passed since you began your journey. Suppose that y = e(u) is the
elevation (m) of SW 35th Ave where u is the distance (ft) from Vermont St
headed towards Capitol Highway.

What, including units, would be the meanings of d(25) = 300, e(300) =
140, and (e ◦ d) (25) = 140?

7.

What, including units, would be the meanings of du
dt

∣∣
t=25

= 14 and
dy
du

∣∣
u=300

= −0.1?
8.

Suppose that the values stated in Exercise 8 are accurate. What, includ-
ing unit, is the value of dy

dt

∣∣
t=25

? What does this value tell you in the
context of this problem?

9.

According to Hooke’s Law, the force (lb), F , required to hold a spring in place
when its displacement from the natural length of the spring is x (ft), is given
by the formula F = kx where k is called the spring constant. The value of k
varies from spring to spring.
Suppose that it requires 120 lb of force to hold a given spring 1.5 ft beyond its
natural length.
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Find the spring constant for this spring. Include units when substituting
the values for F and x into Hooke’s Law so that you know the unit on
k.

10.

What, including unit, is the constant value of dF
dx

?11.

Suppose that the spring is stretched at a constant rate of 0.032 ft
s . If we

define t to be the amount of time (s) that passes since the stretching
begins, what, including unit, is the constant value of dx

dt
?

12.

Use the chain rule to find the constant value (including unit) of dF
dt

. What
is the contextual significance of this value?

13.
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6.5 Supplement

Exercises

1. The functions f(x) = e3x, g(x) = (ex)3, and h(x) = (e3)
x are equivalent.

Find the first derivative formulas for each of the functions (without altering
their given forms) and then explicitly establish that the derivative formulas are
the same.

Consider the function k(θ) = sin−1(sin(θ)).

Over the interval
[
−π

2
, π
2

]
, k(θ) = θ. What does this tell you about the

formula for k′(θ) over
(
−π

2
, π
2

)
?

2.

Use the chain rule and an appropriate trigonometric identity to verify
your answer to Exercise 2. Please note that cos(θ) > 0 over

(
−π

2
, π
2

)
.

3.

What is the constant value of k′(θ) over
(
π
2
, 3π

2

)
?4.

What is the value of k′(π
2

)
?5.

Consider the function f shown in Figure 6.5.1.

−6 −4 −2 2 4 6
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Figure 6.5.1: y = f(x)

Suppose that g(x) = [f(x)]4. Over what intervals is g′ positive?6.

Suppose that r(x) = ef(x). Over what intervals is r′ positive?7.

Suppose that w(x) = ef(−x). Over what intervals is w′ positive?8.

Suppose that h(x) = 1
f(x)

. Is h differentiable at −3? Please note that f

has a horizontal tangent line at −3.
9.
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Decide whether or not it is necessary to use the chain rule when finding the
derivative with respect to x of each of the following functions.

f(x) = ln(x+ 1)10. f(x) =
2

x5
11.

f(x) = cos(π)12. f(x) = cos(x)13.

f(x) = cos(πx)14. f(x) =
cos(πx)

π
15.

Find the first derivative with respect to x of each of the following functions. In
all cases, look for appropriate simplifications before taking the derivative. Please
note that some of the functions will be simpler to differentiate if you first use
the rules of logarithms to expand and simplify the logarithmic expression.

f(x) = tan−1(
√
x)16. f(x) = ee

sin(x)17.

f(x) = sin−1(cos(x))18. f(x) = tan(x sec(x))19.

f(x) = tan(x) sec(sec(x))20. f(x) = 3

√
(sin(x2))221.

f(x) = 4x sin2(x)22. f(x) = ln(x ln(x))23.

f(x) = ln
(

5

xex

)
24. f(x) = 2 ln

(
3
√

x tan2(x)
)

25.

f(x) = ln
(

ex+2

√
x+ 2

)
26. f(x) = ln(xe + e)27.

f(x) = sec4(ex)28. f(x) = sec−1(ex)29.

f(x) = csc
(

1√
x

)
30. f(x) =

1

csc(
√
x)

31.

f(x) =
tan−1(2x)

2
32. f(x) = x3 sin

(x
3

)
33.

f(x) =
4√
3
x7

34. f(x) =
exe

x

x
35.

f(x) = xexe
236. f(x) =

sin5(x)−
√

sin(x)
sin(x)37.

f(x) = 4x sin(x) cos(x2)38. f(x) = sin(x cos2(x))39.



Lab 7

Implicit Differentiation

7.1 General Implicit Differentiation

Read the next lab early! Before coming to the next lab session, Lab 8,
read the special note at the beginning of that lab. You are asked to do some
reading outside of class before you begin working on the lab in class. More
explanation is given in that note.

Some points that satisfy the equation y3−4y = x2−1 are graphed in Figure 7.1.1.
Clearly this set of points does not constitute a function where y is a function of
x; for example, there are three points that have an x-coordinate of 1.

Nevertheless, there is a unique tan-
gent line to the curve at each point
on the curve and so long as the tan-
gent line is not vertical it has a unique
slope. We still identify the value of
this slope using the symbol dy

dx
, so it

would be helpful if we had a formula
for dy

dx
. If we could solve y3 − 4y =

x2 − 1 for y, finding the formula for
dy
dx

would be a snap. Hopefully you
quickly see that such an approach is
just not reasonable.

−6 −4 −2 2 4 6
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Figure 7.1.1: y3 − 4y = x2 − 1

To get around this problem we are going to employ a technique called implicit
differentiation. We use this technique to find the formula for dy

dx
whenever the

equation relating x and y is not explicitly solved for y. What we are going to

101
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do is treat y as if it were a function of x and set the derivatives of the two sides
of the equation equal to one another. This is actually a reasonable thing to do
because so long as we are at a point on the curve where the tangent line is not
vertical, we could make y a function of x using appropriate restrictions on the
domain and range.
Since we are treating y as a function of x, we need to make sure that we use
the chain rule when differentiating terms like y3. When u is a function of x, we
know that d

dx
(u3) = 3u2 d

dx
(u). Since the name we give d

dx
(y) is dy

dx
, it follows that

when y is a function of x, d
dx
(y3) = 3y2 dy

dx
. The derivation of dy

dx
for the equation

y3 − 4y = x2 − 1 is shown in Example 7.1.2.

Example 7.1.2.

y3 − 4y = x2 − 1

d

dx

(
y3 − 4y

)
=

d

dx

(
x2 − 1

)
Differentiate each side with respect to x.

3y2
dy

dx
− 4

dy

dx
= 2x Respect the chain rule with the y-terms.(

3y2 − 4
) dy
dx

= 2x Begin to isolate dy

dx
dy

dx
=

2x

3y2 − 4
.

At first it might be unsettling that the formula for dy
dx

contains both the variables
x and y. However, if you think it through you should conclude that the formula
must include the variable y; otherwise, how could the formula generate three
different slopes at the points (1, 2), (1, 0), and (1,−2)? These slopes are given
below. The reader should verify their values by drawing lines onto Figure 7.1.1
with the indicated slopes at the indicated points.

dy

dx

∣∣∣∣
(1,2)

=
2(1)

3(2)2 − 4

=
1

4

dy

dx

∣∣∣∣
(1,0)

=
2(1)

3(0)2 − 4

= −1

2

dy

dx

∣∣∣∣
(1,−2)

=
2(1)

3(−2)2 − 4

=
1

4

Exercises

Use the process of implicit differentiation to find a formula for dy
dx

for the curves
generated by each of the following equations. Do not simplify the equations
before taking the derivatives. You will need to use the product rule for differen-
tiation in Exercises 4–6.
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3x4 = −6y51. sin(x) = sin(y)2.

4y2 − 2y = 4x2 − 2x3. x = y ey4.

y = xey5. xy = exy−16.

7. Several points that satisfy the equation y = xey are graphed in Figure 7.1.3.

Find the slope and equation of the
tangent line to this curve at the origin.
(Please note that you already found
the formula for dy

dx
in Exercise 5.)

−4 −2 2

−4

−2

2

4

x

y

Figure 7.1.3: y = xey

Consider the set of points that satisfy the equation xy = 4.

Use implicit differentiation to find a formula for dy
dx

.8.

Find a formula for dy
dx

after first solving the equation xy = 4 for y.9.

Show that the two formulas are equivalent so long as xy = 4.10.

11. A set of points that satisfy the equation x cos(xy) = 4 − y is graphed in
Figure 7.1.4.
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Find the slope and equation of the
tangent line to this curve at the point
(0, 4).
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Figure 7.1.4: x cos(xy) = 4− y

7.2 Derivatives of Inverse Functions

Using Definition 3.3.1, it is easy to establish that d
dx
(x2) = 2x. We can use this

formula and implicit differentiation to find the formula for d
dx
(
√
x). If y =

√
x,

then y2 = x (and y ≥ 0). Using implicit differentiation we have:

y2 = x

d

dx

(
y2
)
=

d

dx
(x)

2y
dy

dx
= 1

dy

dx
=

1

2y
.

But y =
√
x, so we have: dy

dx
=

1

2y

=
1

2
√
x

.

In a similar manner, we can use the fact that d
dx
(sin(x)) = cos(x) to come

up with a formula for d
dx

(
sin−1(x)

)
. If y = sin−1(x), then sin(y) = x and

−π
2
≤ y ≤ π

2
. Note that because of the angle range that y is confined to, that

cos(y) is positive. So the Pythagorean identity cos2(y) = 1− sin2(y) implies that
cos(y) =

√
1− sin2(y). This gives us:

sin(y) = x

d

dx
(sin(y)) = d

dx
(x)
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cos(y)dy
dx

= 1

dy

dx
=

1

cos(y)
dy

dx
=

1√
1− sin2(y)

dy

dx
=

1√
1− x2

.

Exercises

1. Use the fact that d
dx
(ex) = ex together with implicit differentiation to show

that d
dx
(ln(x)) = 1

x
. Begin by using the fact that y = ln(x) implies that ey = x

(and x > 0). Your first step is to differentiate both sides of the equation ey = x
with respect to x.
2. Use the fact that d

dx
(ln(x)) = 1

x
together with implicit differentiation to show

that d
dx
(ex) = ex. Begin by using the fact that y = ex implies that ln(y) = x.

Your first step is to differentiate both sides of the equation ln(y) = x with respect
to x.
3. Use the fact that d

dx
(tan(x)) = sec2(x) together with implicit differentiation

to show that d
dx
(tan−1(x)) = 1

1+x2 . Begin by using the fact that y = tan−1(x)
implies that tan(y) = x (and −π

2
< y < π

2
). Your first step is to differentiate

both sides of the equation tan(y) = x with respect to x. Please note that you
will need to use the Pythagorean identity that relates the tangent and secant
functions while working this problem.

7.3 Logarithmic Differentiation

You have formulas that allow you to differentiate x2, 2x, and 22. You don’t,
however, have a formula to differentiate xx. In this section you are going to
use a process called logarithmic differentiation to determine the derivative
formula for the function y = xx. Example 7.3.1 shows this process for a different
function.
With logarithmic differentiation, when y is written as a function of x, especially
one involving only products, quotients, and powers, begin by taking the loga-
rithm of both sides of the equation relating y to x. This technique will usually
only be helpful if the logarithm rules allow you to break up the right side some.
Proceed to differentiate each side with respect to x. On the left side, respect the
rules for implicit differentiation. Once this is done, algebraically solve for dy

dx
. If

there are any instances of y left, replace them with the original expression in x.
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Example 7.3.1 (Logarithmic Differentiation).

y =
xex

4x+ 1

ln(y) = ln
(

xex

4x+ 1

)
ln(y) = ln

(
xex
)
− ln(4x+ 1)

ln(y) = ex ln(x)− ln(4x+ 1)

d

dx
(ln(y)) = d

dx
(ex ln(x)− ln(4x+ 1))

1

y

dy

dx
=

d

dx
(ex) · ln(x) + ex · d

dx
(ln(x))− 1

4x+ 1
· d

dx
(4x+ 1)

1

y

dy

dx
= ex · ln(x) + ex · 1

x
− 1

4x+ 1
· 4

1

y

dy

dx
= ex ln(x) + ex

x
− 4

4x+ 1

dy

dx
= y

(
ex ln(x) + ex

x
− 4

4x+ 1

)
dy

dx
=

xex

4x+ 1

(
ex ln(x) + ex

x
− 4

4x+ 1

)

In the olden days (before symbolic calculators) we would use the process of
logarithmic differentiation to find derivative formulas for complicated functions.
The reason this process is “simpler” than straight forward differentiation is that
we can obviate the need for the product and quotient rules if we completely
expand the logarithmic expression before taking the derivative.

Exercises

1. The function y = xx is only defined for positive values of x (which in turn
means y is also positive), so we can say that ln(y) = ln(xx). Use implicit
differentiation to find a formula for dy

dx
after first applying the power rule of

logarithms to the logarithmic expression on the right side of the equal sign. Once
you have your formula for dy

dx
, substitute xx for y. Voila! You will have the

derivative formula for xx. So go ahead and do it.
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7.4 Supplement

Read the next lab early! Before coming to the next lab session, Lab 8,
read the special note at the beginning of that lab. You are asked to do some
reading outside of class before you begin working on the lab in class. More
explanation is given in that note.

Exercises

1. The curve x sin(xy) = y is shown in Figure 7.4.1.

Find a formula for dy
dx

and use that
formula to determine the x-coordinate
at each of the two points the curve
crosses the x-axis. (Note: The tan-
gent line to the curve is vertical
at each of these points.) Scales
have deliberately been omitted in Fig-
ure 7.4.1.

x

y

Figure 7.4.1: x sin(xy) = y

2. For the curve x sin(xy) = y plotted in Figure 7.4.1, find the slope of the
tangent line at

(√
π/3,
√

π/12
)

.

3. Solutions to the equation ln(x2y2) = x + y are graphed in Figure 7.4.2.
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Determine the equation of the tangent
line to this curve at the point (1,−1).
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Figure 7.4.2: ln(x2y2) = x+ y

Use the process of logarithmic differentiation to find a first derivative formula
for each of the following functions.

y =
x sin(x)√
x− 1

4. y =
e2x

sin4(x)
4
√
x5

5. y =
ln(4x3)

x5 ln(x)6.



Lab 8

Related Rates

Read this lab early! The author of the lab manual uses a specific ap-
proach to finding solutions to related rates problems. Because the author’s
approach may vary in its details from that shown by your instructor, it is
important that you read a couple of examples before you come to lab. You
don’t need to fully understand the examples, you just need to have a general
sense of the author’s approach so that you can follow the directions in the
actual activities. Make sure that you read the examples from Activity 8.1
and Activity 8.2 before you come to lab so that you are prepared to work
on the actual activities as soon as lab begins.

8.1 Introduction to Related Rates

Consider the following problem.

A perfectly spherical snowball melts at a constant rate of 0.3 cm3

min . At
what rate is the radius decreasing when the radius of the snowball is
exactly 1.4 cm?

Before we actually solve the problem, let’s take a moment to think about the
situation. If the snowball were really large, there would be a lot of surface area
to account for the loss of water. When the snowball gets small, however, there’s
less surface area to contribute water and, consequently, the radius will decrease
at a faster rate than it does when the snowball is large. Mathematically, this
increase in the rate at which the radius changes over time is a result of the
manner in which the radius changes with respect to volume.
Figure 8.1.1 shows a graph of r = f(V ) where r is the radius of a sphere of
volume V . Note that the tangent lines to the curve have greater slope the closer
V gets to zero. This tells us that a small change in volume has a greater effect
on the radius the closer V is to zero.

109
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Once the value of V gets large, the
slope of the tangent lines is almost
zero. This tells us that when the vol-
ume is large, a small change in volume
has almost no effect on the radius.

−2 2 4 6 8 10 12

1

2

V

r

Figure 8.1.1: r = f(V )

Since the volume is decreasing at a constant rate, and a change in volume has
a greater and greater effect on the radius as the volume decreases, the rate at
which the radius decreases must increase as time goes by. This relationship
between the rates at which the volume and radius change is an example of what
is called related rates.
An acronym sometimes associated with the solution process for related rates
problems is dreds. The first four letters of the acronym stand for Diagram,
Rates, Equation, and Differentiate. The final letter stands for Substitute. The
reason the substitution steps comes last is that you need to have a rates equation
before you have a place to substitute your values.
The first thing we need to do is clearly identify our variables. In related rates
problems there are three broad types of variables.

1. Variables that measure physical quantities. These include, among other
things, length variables, angle measurement variables, area variables, and
volume variables. We will call these quantity-variables.

2. Variables that measure rates (with respect to time). These variables always
emerge by taking the derivatives (with respect to time) of the quantity-
variables. We will call these rate-variables.

3. A time variable. Depending on context, time may be measured in sec-
onds, minutes, hours, days, weeks, years, etc.

The first three letters of dreds (Diagram, Rates, Equation) are all interrelated
and are not always to be taken literally. Basically they are meant to suggest
that you need to identify the rates in the problem (either a given rate or the
unknown rate you seek to find), identify quantity-variables that differentiate to
each rate, and find an equation that relates those quantity-variables. A diagram
is frequently useful during this part of the problem solving process.
Let’s make a variable table for the snowball problem. Please note that we will
need a volume variable. We know this because of the presence of cm3 in the given
rate unit; cubic-centimeters always measure volume (just as square-centimeters



ACTIVITY 8.1. INTRODUCTION TO RELATED RATES 111

always measure area and centimeters always measure length). We will also need
a radius variable (as the rate of change in the radius is stated in the problem).

Table 8.1.2: Variable table for the snowball problem

Variable Variable Description Unit

V
The volume of the snowball t minutes after the snowball
begins to melt. cm3

r
The radius of the snowball t minutes after the snowball
begins to melt. cm

dV
dt

The rate of change in the volume of the snowball t
minutes after the snowball begins to melt.

cm3

min

dr
dt

The rate of change in the radius of the snowball t
minutes after the snowball begins to melt.

cm
min

t
The amount of time that elapses after the snowball
begins to melt. min

Since we are asked to determine a rate at which the radius changes, we are
ultimately going to need to determine a value of dr

dt
. We cannot do that until we

have an equation that includes the symbol dr
dt

. There is a two-step process that
we follow to find that equation.

1. Find an equation that relates the quantity variables. This step is one of the
places where a diagram sometimes comes into play. This step corresponds
to e in the dreds acronym.

2. Differentiate both sides of the first equation with respect to time and sim-
plify each side. The resultant equation is called the related rates equation.
This step corresponds to the second d in the dreds acronym.

The quantity variables in the snowball problem are V and r. We don’t need a
diagram in this problem as it is “standard knowledge” that the equation that
relates the volume and radius of a sphere is V = 4

3
πr3. Now that we have our

(e)quation, we need to (d)ifferentiate both sides of this equation with respect to
t, keeping in mind that both V and r are variables dependent upon t.

V =
4

3
πr3

d

dt
(V ) =

d

dt

(
4

3
πr3
)

dV

dt
= 4πr2

dr

dt
This is our related rates equation.

Now that we have our related rates equation (and only now), we can finally
(s)ubstitute the given values into the appropriate variables. Before doing so, we
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need to alert the reader with an introductory sentence or phrase. We also need
to clearly state the values of each of the variables for which we know the value.
In most math texts this part of the problem is worked without units. This is
because some problems contain constants with “hidden” units, and it can be
confusing when the units do not work out in the end. Getting back to the actual
solution…
When the radius of the snowball is 1.4 cm and the snowball is melting at the
rate of 0.3 cm3

L :

Table 8.1.3: What we know about the variables at the described moment

Variable What we know

V
This variable is not in the related rates equation so it is no
longer relevant in the problem solving process.

r The value of this variable is 1.4.
dV
dt

The value of this variable is −0.3. The value is negative
because the volume decreases over time.

dr
dt This is the variable for which we need to solve.

From our related rates equation and the values in Table 8.1.3:

dr

dt
=

dV
dt

4πr2

dr

dt

∣∣∣∣
r=1.4, dV

dt
=−0.3

=
−0.3

4π(1.4)2

≈ −0.01218 . . .

To finish up we need to write a con-
clusion.

At the moment the ra-
dius of the snowball is
1.4 cm, the radius is de-
creasing at the rate of
about 0.01218 cm

min .

Exercises

Consider the following problem.

A square is getting larger. The sides are each growing at a constant
rate of 3 in

min . At what rate is the area of the square growing the
moment its area is 25 in2?
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Create your variable table. Use x for the side length. (dr)

Table 8.1.4: Variable table for the square problem

Variable Variable Description Unit

1.

Write an equation that relates the two quantity-variables. (e)2.

Differentiate both sides of this equation with respect to t, and simplify.
This equation is called the related rates equation. (d)

3.

Write an orientation sentence or phrase and create a summary table for
your quantity and rate variables. (preparing for s)

Table 8.1.5: What we know about the variables at the described mo-
ment

Variable What we know

4.

Substitute the known values into the related rates equation and solve for
the unknown rate. (s)

5.

Write a conclusion.6.

7. The radius of a circle is decreasing at the rate of 0.2 cm
min . At what rate is the

area of the circle decreasing when the area of the circle is 4π cm2?
Use the problem solving strategy:

(a) Create your variable table. (dr)
(b) Write an equation that relates the two quantity-variables. (e)
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(c) Differentiate both sides of the equation you just wrote with respect to t.
Simplify the result. This is the related rates equation. (d)

(d) Write an orientation sentence or phrase and create a summary table for
your quantity and rate variables. (preparing for s)

(e) Substitute the known values into the related rates equation and solve for
the unknown rate. (s)

(f) Write a conclusion.

8. As salt water boils, the only thing that evaporates is the water—the amount
of salt in the mixture remains constant. As a consequence, the concentration of
salt in the mixture increases over time.
Suppose that the concentration of salt in a pot of boiling water is given by
C = 200

V
where C is the concentration of salt in the mixture (mg

L ) and V is the
total amount of mixture in the pot (L). Determine the rate at which the salt
concentration is changing at the moment there are 5.2 L of liquid in the pot if
at that moment water is evaporating at the rate of 0.13 L

min .

8.2 Diagrams for Related Rates

A particular challenge when working most related rates problems is identifying
the quantity-variables. For example, when working a problem that involves a
right triangle, there are six potential quantity-variables (the lengths of the three
sides, the measurements of the two acute angles, and the area). In each related
rates problem involving a right triangle, at least two of these measurements must
be quantity-variables, or you will not end up with two (or more) rates to relate!
Example 8.2.1. A small drone is flying straight upward at the rate of 0.88 ft

s .
The drone is tethered to the ground (with a lot of slack) at a point that lies 400 ft
west of the launch point of the drone. Assuming that the ground is perfectly
level, determine the rate at which the angle of elevation from the tether point
to the drone increases at the moment the drone is 300 ft above ground.
When searching for your quantity-variables, you need to identify sentences or
phrases in the problem statement that contain the word “rate” or something
similar (hence the r in dreds). There are two such phrases in this problem:

• “A small drone is flying straight upward at the rate of…”

• “…determine the rate at which the angle of elevation from the tether point
to the drone increase…”

The pieces of the right triangle that correspond to those phrases have been
marked in Figure 8.2.2 as, respectively, h and θ. The distance between the tether
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point and launch point remains constant, hence the side labeled as 400. Please
note that there should be no other annotations of any kind on this diagram. If
writing other numbers down helps you think through the problem, draw a second
triangle on your scratch paper and annotate that in any way the helps. That
said, you need a clean variable diagram in your solution, so leave Figure 8.2.2
as it is.

tether point launch point

drone

400

h

θ

Figure 8.2.2: Variable Diagram

Now we can finish using the rest of the dreds process.

Table 8.2.3: Variable table for the drone problem

Variable Variable Description Unit

h
The elevation of the drone t seconds after the drone begins
to rise. ft

θ
The angle of elevation from the tether point to the drone t
seconds after the drone begins to rise. rad

dh
dt

The rate of change in elevation of the drone t seconds after
the drone begins to rise.

ft
s

dθ
dt

The rate of change in the angle of elevation from the tether
point to the drone t seconds after the drone begins to rise.

rad
s

t
The amount of time that elapses after the drone begins to
rise. s

tether point launch point

drone

400

h

θ

tan(θ) = h

400
d

dt
(tan(θ)) = d

dt

(
h

400

)
sec2(θ)dθ

dt
=

1

400

dh

dt

This is our related rates equation.

Figure 8.2.4: Variable Diagram
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At the moment the drone is 300 ft above the ground and rising at a rate of 0.88 ft
s .

Table 8.2.5: What we know about the variables at the described moment

Variable What we know
h The value of this variable is 300.
θ tan(θ) = 3

4
, which implies that cos(θ) = 4

5
.

dh
dt

The value of this variable is 0.88.
dθ
dt

This is the variable for which we need to solve.

From our related rates equation and the values in Table 8.2.5,
dθ

dt
=

1

400
cos2(θ)dh

dt

dθ

dt

∣∣∣∣
cos(θ)= 4

5
, dh
dt

=0.88

=
1

400

(
4

5

)2

(0.88)

= 0.001408.
When the elevation of the drone is 300 ft and the drone is rising at a rate of
0.88 ft

s , the angle of elevation from the tether point to the drone is increasing at
a rate of (about) 0.0014 rad

s .

Exercises

Three related rates problems are stated below. Each of the problems can be
modeled using a right triangle. The sole task in this problem is to identify which
pieces of the triangle correspond to quantity-variables and which piece of the
triangle (if any) remains constant as the other pieces change.
For each problem, you need to identify which two or three pieces of the triangle
correspond to quantity-variables and which pieces remain constant or are not
relevant. For each problem, draw a right triangle and label the pieces appropri-
ately (finally a d for Diagram). When you are done, any given triangle should
either have two pieces labeled as variables and one piece labeled with a constant
value or three pieces labeled as variables.

A jet is climbing at a constant airspeed of 430 mph and at a constant
angle of elevation of 12°. At what rate is the elevation of the jet changing
when the jet is 2640 ft above the ground? (Assume that the ground
elevation below the jet’s path does not change as the jet makes its climb.)

1.

A 17 ft ladder is propped against a very tall wall but the top of the ladder
is slipping down the wall. At the moment the top of the ladder is 12 ft
above the ground it is slipping at the rate of 0.2 ft

s . At what rate is the
distance between the foot of the ladder and the wall changing at that
moment?

2.
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In Kansas, Highway A runs due north-south for 125 miles and Highway
B runs dues east-west for 222 miles. The elevation of both highways is
constantly 725 feet their entire lengths. The highways intersect at a point
exactly halfway through their runs. One Tuesday a car is travelling east
on Highway B at the constant speed of 76 mph and a truck is traveling
north on Highway A at a constant speed of 84 mph. The car passes
through the point of intersection at 4:12 pm and the truck passes through
the point of intersection at 4:17 pm. At what rate is the distance between
the two vehicles changing at 4:27 that afternoon? Assume that the speeds
of the car and truck do not vary at all between 4:10 pm and 4:30 pm.

3.

4. Go ahead and finish the three problems stated in Exercises 8.2.1.1–3. Re-
member to complete each step in the problems solving process.

(a) Draw a properly labeled variable diagram. (d) Note that you completed
this step while working Exercises 8.2.1.1–3.

(b) Make a variable definition table. Include each variable type (quantity, rate,
and time). Include the unit for each variable (r)

(c) Write down an equation that relates the two quantity-variables. (e)
(d) Differentiate both sides of the equation you just wrote with respect to t.

Simplify the result. This equation is called the related rates equation.
(d)

(e) Write an orientation sentence or phrase and create a summary table for
your quantity and rate variables. (preparing for s)

(f) Substitute the known values into the related rates equation and solve for
the unknown rate. (s)

(g) Write a conclusion.

5. When working with “common knowledge” formulas, it is important to identify
which variables in the formula are really relevant to the stated problem and to
then eliminate any irrelevant variables from the formula. Consider the following
problem.

Slushy is flowing out of the bottom of a cup at the constant rate of
0.9 cm3

s . The cup is the shape of a right circular cone. The height of the
cup is 12 cm and the radius at the top of the cup is 3 cm. Determine
the rate at which the depth of the remaining slushy changes at the
instant there are exactly 8π cm3 of slushy remaining in the cup.

The presence of the cubic-centimeter unit indicates that the problem is rooted in
a volume formula. Specifically, we need the volume formula for a right circular
cone which is V = π

3
r2h where r is the radius at the top of the cone and h is the

height of the cone.
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In the stated problem, we are told the rate at which the volume of the remaining
slushy changes and we are asked to determine the rate at which the depth of the
remaining slushy changes. The rates correspond to dV

dt
and dh

dt
where V and h

are, respectively, the volume (cm3) and depth (cm) of the slushy that remains
in the cup t seconds after the slushy begins to flow out of the bottom of the cup.
Since the value of dr

dt
is neither given nor desired, we need to eliminate the variable

r from the formula V = π
3
r2h. We do this by exploiting a property of similar

triangles. Two triangles are said to be similar if and only if the three angular
measurements of the first triangle are identical to the angular measurements of
the second triangle. One thing that is always true about similar triangles is that
their corresponding sides are proportional. This latter fact is the only reason we
are able to define trigonometric functions in terms of the ratios of the sides of a
right triangle!

12cm

3 cm

h

r

A diagram of the cup is shown in Fig-
ure 8.2.6. The radius of the cone at
the top of the remaining slushy is la-
beled as r and the depth of the re-
maining slushy is labeled as h. The
radius at the top of the cup as well as
the height of the cup are also shown.

Figure 8.2.6: Slushy Cone

Use the fact that the two right triangles in Figure 8.2.6 are similar to write a
proportion that relates r, h, 3 cm, and 12 cm. Solve that equation for r and
substitute the resultant formula into V = π

3
r2h. Simplify the resultant formula

of h; that’s the actual volume formula you want to use while solving the related
rates problem—the formula that relates V and h.
Go ahead and solve the related rates problem.
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8.3 Supplement

Exercises

1. A weather balloon is rising vertically at the rate of 10 ft
s . An observer is

standing on the ground 300 ft horizontally from the point where the balloon was
released. At what rate is the distance between the observer and the balloon
changing when the balloon is 400 ft height?
2. At 2:00 PM one day, Muffin and Rex were sleeping atop one another. A
loud noise startled the animals and Muffin began to run due north at a constant
rate of 1.7 ft

s while Rex ran due east at a constant rate of 2.1 ft
s . The critters

maintained these paths and rates for several seconds. Calculate the rate at which
the distance between the cat and dog was changing three seconds into their run.
3. Schuyler’s clock is kaput; the minute hand functions as it should but the hour
hand is stuck at 4. The minute hand on the clock is 30 cm long and the hour
hand is 20 cm long. Determine the rate of change between the tips of the hands
every time the minute hand points directly at 12.
4. It was a dark night and 5.5 ft tall Bahram was walking towards a street lamp
whose light was perched 40 ft into the air. As he walked, the light caused a
shadow to fall behind Bahram. When Bahram was 80 ft from the base of the
lamp he was walking at a pace of 2 ft

s . At what rate was the length of Bahram’s
shadow changing at that instant? Make sure that each stated and calculated
rate value has the correct sign. Make sure that your conclusion sentence clearly
communicates whether the length of the shadow was increasing or decreasing at
the indicated time.
5. The gravitational force, F , between two objects in space with masses m1 and
m2 is given by the formula F = Gm1m2

r2
where r is the distance between the

objects’ centers of mass and G is the universal gravitational constant.
Two pieces of space junk, one with mass 500 kg and the other with mass 3000 kg,
were drifting directly toward one another. When the objects’ centers of mass
were 250 km apart the lighter piece was moving at a rate of 0.5 km

h and the heavier
piece was moving at a rate of 0.9 km

h . Leaving G as a constant, determine the rate
at which the gravitational force between the two objects was changing at that
instant. Make sure that each stated and calculated rate value has the correct
sign. Make sure that your conclusion sentence clearly communicates whether the
force was increasing or decreasing at that given time. The unit for F is Newtons
(N).
6. An eighteen inch pendulum sitting atop a table is in the downward part of its
motion. The pivot point for the pendulum is 30 in above the table top. When the
pendulum is 45° away from vertical, the angle formed at the pivot is decreasing
at the rate of 25 °

s . At what rate is the end of the pendulum approaching the
table top at this instant? Make sure that each stated and calculated rate value
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has the correct sign. Make sure that you use appropriate units when defining
your variables.



Lab 9

Critical Numbers and Graphing
from Formulas

9.1 Motivation

In the first activity of this lab you are going to discuss a few questions with your
group mates that will hopefully motivate you for one of the topics covered in the
lab.

Exercises

1. Discuss how you could use the first derivative formula to help you determine
the vertex of the parabola y = −2x2 + 18x − 7 and then determine the vertex.
Remember that the vertex is a point in the xy-plane and as such is identified
using an ordered pair.

2. The curves in Figures 9.1.1 and 9.1.2 were generated by two of the four
functions given below. Use the given functions along with their first derivatives
to determine which functions generated the curves. Please note that the y-scales
have deliberately been omitted from the graphs and that different scales were
used to generate the two graphs. Resist any temptation to use your calculator;
use of your calculator totally obviates the point of the exercise.

121
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−3 −2 −1 1 2 3 4 5 6 7

x

y

−3 −2 −1 1 2 3 4 5 6 7

x

y

Figure 9.1.1: mystery curve 1 Figure 9.1.2: mystery curve 2

The potential functions are

f1(x) =
1

(x− 2)10/7
+ C1 f2(x) =

1

(x− 2)2/7
+ C2

f3(x) = (x− 2)
2/7 + C3 f4(x) = (x− 2)

10/7 + C4

where C1, C2, C3, C4 are unknown constants.

9.2 Local Extrema

Referring back to Exercises 9.1, the vertex of the parabola in Exercise 1 is called a
local maximum point and the points (2, C3) and (2, C4) in Exercise 2 are called
local minimum points. Collectively, these points are called local extreme
points.
While working through Exercises 9.1 you hopefully came to the conclusion that
the local extreme points had certain characteristics in common. In the first place,
they must occur at a number in the domain of the function (which eliminated f1
and f2 from contention in Exercise 2). Secondly, one of two things must be true
about the first derivative when a function has a local extreme point; it either has
a value of zero or it does not exist. This leads us to the definition of a critical
number of a function.

Definition 9.2.1 (Critical Numbers). If f is a function, then we define the
critical numbers of f as the numbers in the domain of f where the value of f ′

is either zero or does not exist.

Exercises

1. The function g shown in Figure 9.2.2 has a vertical tangent line at −3.
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Veronica says that −3 is a critical
number of g but Tito disagrees. Tito
contends that −3 is not a critical
number because g does not have a
local extreme point at −3. Who is
right?

−8 −6 −4 −2 2

−5

−4

−3

−2

−1

1

2

3

4

5

x

y

Figure 9.2.2: y = g(x)

Answer each of the following ques-
tions (using complete sentences) in
reference to the function f shown in
Figure 9.2.3.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6
x
=

−
5

x

y

Figure 9.2.3: y = f(x)

What are the critical numbers of f?2.

What are the local extreme points on f? Classify the points as local
minimums or local maximums and remember that points on the plane
are represented by ordered pairs.

3.

Find the absolute maximum value of f over the interval (−7, 7). Please
note that the function value is the value of the y-coordinate at the point
on the curve and as such is a number.

4.

Decide whether each of the following statements is True or False.
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True or False? A function always has a local extreme point at each of
its critical numbers.

5.

True or False? If the point (t1, h(t1)) is a local minimum point on h,
then t1 must be a critical number of h.

6.

True or False? If g′(2.7) = 0, then g must have a local extreme point at
2.7.

7.

True or False? If g′(2.7) = 0, then 2.7 must be a critical number of g.8.

True or False? If g′(9) does not exist, then 9 must be a critical number
of g.

9.

9.3 Formal Identification of Critical Numbers

When finding critical numbers based upon a function formula, there are three
issues that need to be considered; the domain of the function, the zeros of the
first derivative, and the numbers in the domain of the function where the first
derivative is undefined. When writing a formal analysis of this process each of
these questions must be explicitly addressed. The following outline shows the
work you need to show when you are asked to write a formal determination of
critical numbers based upon a function formula.

Algorithm 9.3.1 (A process for formal determination of critical numbers).
Please note that you should present your work in narrative form using complete
sentences that establish the significance of all stated intervals and values. For
example, for the function g(t) =

√
t− 7 the first sentence you should write is

“The domain of g is [7,∞) .”

1. Using interval notation, state the domain of the function.

2. Differentiate the function and completely simplify the resultant formula.
Simplification includes:

(a) Manipulating all negative exponents into positive exponents.
(b) If any rational expression occurs in the formula, all terms must be

written in rational form and a common denominator must be estab-
lished for the terms. The final expression should be a single rational
expression.

(c) The final expression must be completely factored.
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3. State the values where the first derivative is equal to zero; show any non-
trivial work necessary in making this determination. Make sure that you
write a sentence addressing this issue even if the first derivative has no
zeros.

4. State the values in the domain of the function where the first derivative
does not exist; show any non-trivial work necessary in making this deter-
mination. Make sure that you write a sentence addressing this issue even
if no such numbers exist.

5. State the critical numbers of the function. Make sure that you write this
conclusion even if the function has no critical numbers.

Because the domain of a function is such an important issue when determining
critical numbers, there are some things you should keep in mind when determining
domains.

• Division by zero is never a good thing.

• Over the real numbers, you cannot take even roots of negative numbers.

• Over the real numbers, you can take odd roots of negative numbers.

• n
√
0 = 0 for any positive integer n.

• Over the real numbers, you can only take logarithms of positive numbers.

• The sine and cosine function are defined at all real numbers. You should
check with your lecture instructor to see if you are expected to know the do-
mains of the other four trigonometric functions and/or the inverse trigono-
metric functions.

Exercises

Formally establish the critical numbers for each of the following functions fol-
lowing the procedure outlined in Algorithm 9.3.1.

f(x) = x2 − 9x+ 41. g(t) = 7t3 + 39t2 − 24t2.

p(t) = (t+ 8)2/33. z(x) = x ln(x)4.

y(θ) = ecos(θ)5. T (t) =
√
t− 4

√
16− t6.
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The first derivative of the function m(x) =
√
x−5
x−7

is

m′(x) =
3− x

2
√
x− 5(x− 7)2

.

Roland says that 5 is a critical number of m but Yuna disagrees. Who
is correct and why?

7.

Roland says that 7 is a critical number of m but Yuna disagrees. Who
is correct and why?

8.

Roland says that 3 is a critical number of m but Yuna disagrees. Who
is correct and why?

9.

9.4 Sign Tables for the First Derivative

Once you have determined the critical numbers of a function, the next thing you
might want to determine is the behavior of the function at each of its critical
numbers. One way you could do that involves a sign table for the first derivative
of the function.

Exercises

1. The first derivative of f(x) = x3 − 21x2 + 135x− 24 is f ′(x) = 3(x− 5)(x−
9).

The critical numbers of f are triv-
ially shown to be 5 and 9. Copy
Table 9.4.1 onto your paper and fill
in the missing information. Then
state the local minimum and max-
imum points on f . Specifically ad-
dress both minimum and maximum
points even if one and/or the other
does not exist. Remember that
points on the plane are represented
by ordered pairs. Make sure that
you state points on f and not f ′!

Interval Sign of f ′ Behavior of f
(−∞, 5)

(5, 9)

(9,∞)

Table 9.4.1: f ′(x) = 3(x− 5)(x− 9)
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The first derivative of the function g(t) =
√
t−4

(t−1)2
is

g′(t) =
−3(t− 5)

2(t− 1)3
√
t− 4

.

State the critical numbers of g; you do not need to show a formal de-
termination of the critical numbers. You do need to write a complete
sentence.

2.

Copy Table 9.4.2 onto your paper and fill in the missing information.
Then state the local minimum and maximum points on g.

Specifically address both min-
imum and maximum points
even if one and/or the other
does not exist.

Interval Sign of g′ Behavior of g
(4, 5)

(5,∞)

Table 9.4.2: g′(t) = −3(t−5)

2(t−1)3
√
t−4

3.

Why did we not include any part of the interval (−∞, 4) in Table 9.4.2?4.

Formally, we say that g(t0) is a local minimum value of g if there exists
an open interval centered at t0 over which g(t0) < g(t) for every value of
t on that interval (other than t0, of course). Since g is not defined to the
left of 4, it is impossible for this definition to be satisfied at 4; hence g
does not have a local minimum value at 4. State the local minimum and
maximum points on g. Specifically address both minimum and maximum
points even if one and/or the other does not exist.

5.

Write a formal definition for a local maximum point on g.6.

The first derivative of the function k(x) =
3
√

(x−2)2

x−1
is

k′(x) =
4− x

3(x− 1)2 3
√
x− 2

.

State the critical numbers of k; you do not need to show a formal de-
termination of the critical numbers. You do need to write a complete
sentence.

7.
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Copy Table 9.4.3 onto your paper and fill in the missing information.

Table 9.4.3: k′(t) = 4−x
3(x−1)2 3√x−2

Interval Sign of k′ Behavior of k
(−∞, 1)

(1, 2)

(2, 4)

(4,∞)

8.

The number 1 was included as an endpoint in Table 9.4.3 even though 1
is not a critical number of k. Why did we have to include the intervals
(−∞, 1) and (1, 2) in the table as opposed to just using the single interval
(−∞, 2)?

9.

Perform each of the following for the functions in Exercises 9.4.1.10–12.

• Formally establish the critical numbers of the function.

• Create a table similar to Tables 9.4.1–9.4.3. Number the tables. Don’t
forget to include table headings and column headings.

• State the local minimum points and local maximum points on the function.
Make sure that you explicitly address both types of points even if there
are none of one type and/or the other.

k(x) = x3 + 9x2 − 1010. g(t) = (t+ 2)3(t− 6)11.

F (x) =
x2

ln(x)12.

Consider a function f whose first derivative is f ′(x) = (x− 9)4.

Is 9 definitely a critical number of f? Explain why or why not.13.

Other than at 9, what is always the sign of f ′(x)? What does this sign
tell you about the function f?

14.

What type of point does f have at 9? (Hint, draw a freehand sketch of
the curve.)

15.
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How could the second derivative of f be used to confirm your conclusion
in Exercise 15? Go ahead and do it.

16.

9.5 Inflection Points

When searching for inflection points on a function, you can narrow your search
by identifying numbers where the function is continuous (from both directions)
and the second derivative is either zero or undefined. (By definition an inflection
point cannot occur at a number where the function is not continuous from both
directions.) You can then build a sign table for the second derivative that implies
the concavity of the given function.
When performing this analysis, you need to simplify the second derivative for-
mula in the same way you simplify the first derivative formula when looking for
critical numbers and local extreme points.

Exercises

1. Identify the inflection points for the function shown in Figure 9.2.3.

The first two derivatives of the function y(x) = (x+2)2

(x+3)3
are

y′(x) =
−x(x+ 2)

(x+ 3)4
y′′(x) =

2(x+
√
3)(x−

√
3)

(x+ 3)5
.

Yolanda was given this information and asked to find the inflection points
on y. The first thing Yolanda wrote was, “The critical numbers of y are√
3 and −

√
3.” Explain to Yolanda why this is not true.

2.

What are the critical numbers of y and in what way are they important
when asked to identify the inflection points on y?

3.

Copy Table 9.5.1 onto your paper and fill in the missing information.

Table 9.5.1: y′′(x) =
2(x+

√
3)(x−

√
3)

(x+3)5

Interval Sign of y′′ Behavior of y
(−∞,−3)(
−3,−

√
3
)(

−
√
3,
√
3
)(√

3,∞
)

4.
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State the inflection points on y; you may round the dependent coordinate
of each point to the nearest hundredth.

5.

The function y has a vertical asymptote at −3. Given that fact, it was
impossible that y would have an inflection point at −3. Why, then, did
we never-the-less break the interval

(
−∞,−

√
3
)

at −3 when creating
our concavity table?

6.

Perform each of the following for the functions in Exercises 9.5.1.7–9.

• State the domain of the function.
• Find, and completely simplify, the formula for the second derivative of the

function. It is not necessary to simplify the formula for the first derivative
of the function.

• State the values in the domain of the function where the second derivative
is either zero or does not exist.

• Create a table similar to Table 9.5.1. Number the table. Don’t forget to
include table headings and column headings.

• State the inflection points on the function. Make sure that you explicitly
address this question even if there are no inflection points.

f(x) = x4 − 12x3 + 54x2 − 10x+ 67.
g(x) = (x− 2)2ex8.

G(x) =
√
x3 + 6

√
x9.

10. The second derivative of the function w(t) = t1.5−9t0.5 is w′′(t) = 3(t+3)
4t1.5

yet
w has no inflection points. Why is that?

9.6 End Behavior

We are frequently interested in a function’s “end behavior.” That is, what is
the behavior of the function as the input variable increases without bound or
decreases without bound.
Many times a function will approach a horizontal asymptote as its end behavior.
If the horizontal asymptote y = L represents the end behavior of the function f
both as x increases without bound and as x decreases without bound, we write
lim
x→∞

f(x) = L and lim
x→−∞

f(x) = L.
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While working Limits and Continuity you investigated strategies for formally
establishing limit values as x → ∞ or x → −∞. In this activity you are going
to investigate a more informal strategy for determining these type limits.
Consider lim

x→∞
4x−2
3+20x

. When the value of x is really large, we say that the term 4x

dominates the numerator of the expression and the term 20x dominates the de-
nominator. We actually call those terms the dominant terms of the numerator
and denominator. The dominant terms are significant because when the value
of x is really large, the other terms in the expression contribute almost nothing
to the value of the expression. That is, for really large values of x:

4x− 2

3 + 20x
≈ 4x

20x

=
1

5

For example, even if x has the paltry
value of 1000,

4(1000)− 2

3 + 20(1000)
=

3998

20003

≈ 0.19987 . . . ≈ 1

5

This tells us that lim
x→∞

4x−2
3+20x

= 1
5

and that y = 1
5

is a horizontal asymptote for
the graph of y = 4x−2

3+20x
.

Exercises

The formulas used to graph Figures 9.6.1–9.6.5 are given below. Focusing first
on the dominant terms of the expressions, match the formulas with the functions
(f1 through f5).

y =
3x+ 6

x− 2
1. y =

16 + 4x

6 + x
2.

y =
6x2 − 6x− 36

36− 3x− 3x2
3. y =

−2x+ 8

x2 − 100
4.

y =
15

x− 5
5.
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Figure 9.6.1: y = f1(x) Figure 9.6.2: y = f2(x)
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Figure 9.6.3: y = f3(x) Figure 9.6.4: y = f4(x)
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−16

−12
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8
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y = 0

x
=

5

x

y

Figure 9.6.5: y = f5(x)

Use the concept of dominant terms to informally determine the value of each of
the following limits.

lim
x→−∞

4 + x− 7x3

14x3 + x2 + 2
6. lim

t→−∞

4t2 + 1

4t3 − 1
7.

lim
γ→∞

8

2γ3
8. lim

x→∞

(3x+ 1)(6x− 2)

(4 + x)(1− 2x)
9.

lim
t→∞

4et − 8e−t

et + e−t
10. lim

t→−∞

4et − 8e−t

et + e−t
11.

9.7 Making Graphs

Let’s put it all together and produce some graphs.

Exercises

Consider the function f(x) = 8x2−8
(2x−4)2

.

Evaluate each of the following limits: lim
x→∞

f(x), lim
x→−∞

f(x), lim
x→2−

f(x),
and lim

x→2+
f(x).

1.

What are the horizontal and vertical asymptotes for f ’s graph?2.
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What are the horizontal and vertical intercepts for f ’s graph?3.

Use the formulas f ′(x) = 4(1−2x)
(x−2)3

and f ′′(x) = 4(4x+1)
(x−2)4

to help you accom-
plish each of the following.

• State the critical numbers of f .
• Create well-documented increasing/decreasing and concavity tables

for f .
• State the local minimum, local maximum, and inflection points on

f . Make sure that you explicitly address all three types of points
whether they exist or not.

4.

Graph y = f(x) onto Figure 9.7.1. Choose a scale that allows you to
clearly illustrate each of the features found in Exercises 1–4. Label all
axes and asymptotes well and write the coordinates of each local extreme
point and inflection point next to the point.

Figure 9.7.1: y = f(x)

5.

Check your graph using a graphing calculator.6.
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7. Following analysis similar to that implied in Exercises 1–5 graph the function

g(t) =
1

(et + 4)2
.

Use the formulas

g′(t) =
−2et

(et + 4)3
g′′(t) =

4et(et − 2)

(et + 4)4
.

Check your graph using a graphing calculator.

Figure 9.7.2: y = g(x)
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9.8 Supplement

Exercises

The sine and cosine function are
called circular trigonometric
functions because, for any given
value of t the point (cos(t), sin(t))
lies on the circle with equation
x2 + y2 = 1. The area of the “pie
slice” defined by the origin, (1, 0),
and the circular arc to (cos(t), sin(t))
is exactly 1

2
t.

(cos(t), sin(t))

x

y

Figure 9.8.1: (cos(t), sin(t)) on the
circle x2 + y2 = 1

There are analogous functions called
hyperbolic sine and hyperbolic
cosine. As you might suspect, these
functions generate points that lie on
a hyperbola; specifically, for all values
of t, the point (cosh(t), sinh(t)) lies on
the hyperbola x2 − y2 = 1. The area
of the “shark fin” defined by the ori-
gin, (1, 0), and the hyperbolic arc to
(cosh(t), sinh(t)) is exactly 1

2
t.

(cosh(t), sinh(t))

x

y

Figure 9.8.2: (cosh(t), sinh(t)) on
the hyperbola x2 − y2 = 1

It turns out that there are formulas for these hyperbolic trigonometric functions
in terms of functions we already know. Specifically:

cosh(t) = et + e−t

2
sinh(t) = et − e−t

2
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Use the exponential formulas to verify the identity cosh2(t)−sinh2(t) = 1.1.

Use the exponential formulas to determine the first derivatives (with
respect to t) of cosh(t) and sinh(t). Determine, by inference, the second
derivative formulas for each of these functions.

2.

Determine the critical numbers of cosh and sinh.3.

Determine the intervals over which cosh and sinh are increasing/decreas-
ing and over which they are concave up/concave down.

4.

Use the exponential formulas to determine each of the following limits:
lim

t→−∞
cosh(t), lim

t→∞
cosh(t), lim

t→−∞
sinh(t), and lim

t→∞
sinh(t).

5.

Use the information you determined in Exercises 3–5 to help you draw
freehand sketches of y = cosh(t) and y = sinh(t).

6.

There are four more hyperbolic functions that correspond to the four
additional circular functions; e.g. tanh(t) = sinh(t)

cosh(t) . Find the exponential
formulas for these four functions.

7.

What would you guess to be the first derivative of tanh(t)? Take the
derivative of the formula for tanh(t) to verify your suspicion.

8.

Let f(t) = tanh(t). What is the sign on f ′(t) at all values of t? What
does this tell you about the function f? What are the values of f(0) and
f ′(0)?

9.

Use the exponential formula for tanh to determine lim
t→−∞

tanh(t) and
lim
t→∞

tanh(t).
10.

Use the information you determined in Exercises 9 and 10 to help you
draw a freehand sketch of y = tanh(t).

11.

Consider the function k defined by k(t) =
3
√
t8 − 256

3
√
t2.

What are the critical numbers of k? Remember to show all relevant work!
Remember that your formula for k′(t) needs to be a single, completely
factored, fraction!

12.

Create an increasing/decreasing table for k.13.

State each local minimum and maximum point on k.14.

Consider the function f defined by f(x) = cos2(x) + sin(x) over the restricted
domain [0, 2π].
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What are the critical numbers of f? Remember to show all relevant work!
Remember that your formula for f ′(x) needs to be a single, completely
factored, fraction!

15.

Create an increasing/decreasing table for f .16.

State each local minimum and maximum point on f .17.

18. Consider g(t) = t+9
t3

. Find (and completely simplify) g′′(t) and state all
numbers where g′′(t) is zero or undefined. Then construct a concavity table for
g and state all of the inflection points on g.

For each of the following functions build increasing/decreasing tables and con-
cavity tables and then state all local minimum points, local maximum points,
and inflection points on the function. Also determine and state all horizontal
asymptotes and vertical asymptotes for the function. Finally, draw a detailed
sketch of the function.

f(x) =
x− 3

(x+ 2)2
19. g(x) =

3
√
x2(x+ 5)20.

k(x) =
(x− 4)2

x+ 3
21.



Appendix A

Limit Laws

Replacement Limit Laws The following laws allow you to replace a limit ex-
pression with an actual value. For example, the expression lim

t→5
t can be replaced

with the number 5, the expression lim
t→7−

6 can be replaced with the number 6,
and the expression lim

z→∞
12
ez

can be replaced with the number 0.

In all cases both a and C represent real numbers.

Theorem (Limit Law R1).

lim
x→a

x = lim
x→a−

x = lim
x→a+

x = a

Theorem (Limit Law R2).

lim
x→a

C = lim
x→a−

C = lim
x→a+

C = lim
x→∞

C = lim
x→−∞

C = C

Theorem (Limit Law R3).

lim
x→∞

f(x) = ∞ =⇒ lim
x→∞

C

f(x)
= 0

lim
x→∞

f(x) = −∞ =⇒ lim
x→∞

C

f(x)
= 0

lim
x→−∞

f(x) = ∞ =⇒ lim
x→−∞

C

f(x)
= 0

lim
x→−∞

f(x) = −∞ =⇒ lim
x→−∞

C

f(x)
= 0

Infinite Limit Laws (limits as the output increases or decreases with-
out bound) Many limit values do not exist. Sometimes the non-existence is
caused by the function value either increasing without bound or decreasing with-
out bound. In these special cases we use the symbols ∞ and −∞ to communicate
the non-existence of the limits.

139
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Some examples of these type of non-existent limits follow.

• lim
x→∞

xn = ∞ (if n is a positive real number)

• lim
x→−∞

xn = ∞ (if n is an even positive integer)

• lim
x→−∞

xn = −∞ (if n is an odd positive integer)

• lim
x→∞

ex = ∞, lim
x→−∞

e−x = ∞, lim
x→∞

ln(x) = ∞, lim
x→0+

ln(x) = −∞

Algebraic Limit Laws The following laws allow you to replace a limit ex-
pression with equivalent limit expressions. For example, the expression

lim
x→5

(
2 + x2

)
can be replaced with the expression

lim
x→5

2 + lim
x→5

x2.

Limit Laws A1–A6 are valid if and only if every limit in the equation exists.
In all cases a can represent a real number, a real number from the left, a real
number from the right, the symbol ∞, or the symbol −∞.

Theorem (Limit Law A1). lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x)

Theorem (Limit Law A2). lim
x→a

(f(x)− g(x)) = lim
x→a

f(x)− lim
x→a

g(x)

Theorem (Limit Law A3). lim
x→a

(Cf(x)) = C lim
x→a

f(x)

Theorem (Limit Law A4). lim
x→a

(f(x) · g(x)) = lim
x→a

f(x) · lim
x→a

g(x)

Theorem (Limit Law A5). lim
x→a

f(x)
g(x)

=
lim
x→a

f(x)

lim
x→a

g(x)
if and only if lim

x→a
g(x) ̸= 0

Theorem (Limit Law A6). lim
x→a

f(g(x)) = f
(

lim
x→a

g(x)
)

when f is continuous at
lim
x→a

g(x)

Theorem (Limit Law A7). If there exists an open interval centered at a over
which f(x) = g(x) for x ̸= a, then lim

x→a
f(x) = lim

x→a
g(x) (provided that both

limits exist).
Additionally, if there exists an open interval centered at a over which f(x) = g(x)
for x ̸= a, then lim

x→a
f(x) = ∞ if and only if lim

x→a
g(x) = ∞, and, similarly,

lim
x→a

f(x) = −∞ if and only if lim
x→a

g(x) = −∞.
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Rational Limit Forms

• real number
non-zero real number . Example: lim

x→3

2x+16
5x−4

(the form is 22
11

)

The value of the limit is the number to which the limit form simplifies; for
example, lim

x→3

2x+16
5x−4

= 2. You can immediately begin applying limit laws if
you are “proving” the limit value.

• non-zero real number
zero . Example: lim

x→7−

x+7
7−x

(the form is 14
0

)

The limit value doesn’t exist. The expression whose limit is being found is
either increasing without bound or decreasing without bound (or possibly
both if you have a two-sided limit). You may be able to communicate the
non-existence of the limit using ∞ or −∞. For example, if the value of x
is a little less than 7, the value of x+7

7−x
is positive. Hence you could write

lim
x→7−

x+7
7−x

= ∞.

• zero
zero . Example: lim

x→−2

x2−4
x2+3x+2

(the form is 0
0
)

This is an indeterminate form limit. You do not know the value of the
limit (or even if it exists) nor can you begin to apply limit laws. You need
to manipulate the expression whose limit is being found until the resultant
limit no longer has indeterminate form. For example:

lim
x→−2

x2 − 4

x2 + 3x+ 2
= lim

x→−2

(x+ 2)(x− 2)

(x+ 2)(x+ 1)

= lim
x→−2

x− 2

x+ 1
.

The limit form is now −4
−1

; you may begin applying the limit laws.

• real number
infinity . Example: lim

x→0+

1−4ex

ln(x) (the form is −3
−∞)

The limit value is zero and this is justified by logic similar to that used to
justify Limit Law R3.

• infinity
real number . Example: lim

x→0+

ln(x)
1−4ex

(the form is −∞
−3

)

The limit value doesn’t exist. The expression whose limit is being found is
either increasing without bound or decreasing without bound (or possibly
both if you have a two-sided limit). You may be able to communicate the
non-existence of the limit using ∞ or −∞. For example, you can write
lim
x→0+

ln(x)
1−4ex

= ∞.

• infinity
infinity . Example: lim

x→∞
3+ex

1+3ex
(the form is ∞

∞)

This is an indeterminate form limit. You do not know the value of the
limit (or even if it exists) nor can you begin to apply limit laws. You need



to manipulate the expression whose limit is being found until the resultant
limit no longer has indeterminate form. For example:

lim
x→∞

3 + ex

1 + 3ex
= lim

x→∞

(
3 + ex

1 + 3ex
·
1/ex

1/ex

)
= lim

x→∞

3
ex

+ 1
1
ex

+ 3
.

The limit form is now 1
3
; you may begin applying the limit laws.

There are other indeterminate limit forms, although the two mentioned here are
the only two rational indeterminate forms. The other indeterminate forms
are discussed in future calculus courses.

Appendix B

Derivative Formulas

k, a, and n represent constants; u and y represent functions of x.
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Table B.0.1:

Basic Formulas Chain Rule Format Implicit Derivative Format
d
dx
(k) = 0

d
dx
(xn) = nxn−1 d

dx
(un) = nun−1 d

dx
(u) d

dx
(yn) = nyn−1 dy

dx
d
dx
(
√
x) = 1

2
√
x

d
dx
(
√
u) = 1

2
√
u

d
dx
(u) d

dx

(√
y
)
= 1

2
√
y
dy
dx

d
dx
(sin(x)) = cos(x) d

dx
(sin(u)) = cos(u) d

dx
(u) d

dx
(sin(y)) = cos(y) dy

dx
d
dx
(cos(x)) = − sin(x) d

dx
(cos(u)) = − sin(u) d

dx
(u) d

dx
(cos(y)) = − sin(y) dy

dx
d
dx
(tan(x)) = sec2(x) d

dx
(tan(u)) = sec2(u) d

dx
(u) d

dx
(tan(y)) = sec2(y) dy

dx
d
dx
(sec(x)) = sec(x) tan(x) d

dx
(sec(u)) = sec(u) tan(u) d

dx
(u) d

dx
(sec(y)) = sec(y) tan(y) dy

dx
d
dx
(cot(x)) = − csc2(x) d

dx
(cot(u)) = − csc2(u) d

dx
(u) d

dx
(cot(y)) = − csc2(y) dy

dx
d
dx
(csc(x)) = − csc(x) cot(x) d

dx
(csc(u)) = − csc(u) cot(u) d

dx
(u) d

dx
(csc(y)) = − csc(y) cot(y) dy

dx
d
dx
(tan−1(x)) = 1

1+x2
d
dx
(tan−1(u)) = 1

1+u2
d
dx
(u) d

dx
(tan−1(y)) = 1

1+y2
dy
dx

d
dx

(
sin−1(x)

)
= 1√

1−x2

d
dx

(
sin−1(u)

)
= 1√

1−u2

d
dx
(u) d

dx

(
sin−1(y)

)
= 1√

1−y2
dy
dx

d
dx
(sec−1(x)) = 1

|x|
√
x2−1

d
dx
(sec−1(u)) = 1

|u|
√
u2−1

d
dx
(u) d

dx
(sec−1(y)) = 1

|y|
√

y2−1

dy
dx

d
dx
(ex) = ex d

dx
(eu) = eu d

dx
(u) d

dx
(ey) = ey dy

dx
d
dx
(ax) = ln(a)ax d

dx
(au) = ln(a)au d

dx
(u) d

dx
(ay) = ln(a)ay dy

dx
d
dx
(ln(x)) = 1

x
d
dx
(ln(u)) = 1

u
d
dx
(u) d

dx
(ln(y)) = 1

y
dy
dx

d
dx
(|x|) = |x|

x
d
dx
(|u|) = |u|

u
d
dx
(u) d

dx
(|y|) = |y|

y
dy
dx

Theorem (Constant Factor Rule of Differentiation).

d

dx
(kf(x)) = k

d

dx
(f(x))

Alternatively, if y = f(x), then d
dx
(ky) = k dy

dx
.

Theorem (Sum/Difference Rule of Differentiation).

d

dx
(f(x)± g(x)) =

d

dx
(f(x))± d

dx
(g(x))

Theorem (Product Rule of Differentiation).

d

dx
(f(x) · g(x)) = d

dx
(f(x)) · g(x) + f(x) · d

dx
(g(x))

Theorem (Quotient Rule of Differentiation).

d

dx

(
f(x)

g(x)

)
=

d
dx
(f(x)) · g(x)− f(x) · d

dx
(g(x))

[g(x)]2

Theorem (Chain Rule of Differentiation).

d

dx
(f(g(x))) = f ′(g(x)) · g′(x)
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Alternatively, if u = g(x), then d
dx
(f(u)) = f ′(u) · d

dx
(u).

Alternatively, if y = f(u), where u = g(x), then dy
dx

= dy
du

· du
dx

.

Appendix C

Some Useful Rules of Algebra

• For positive integers m and n, n
√
xm = xm/n. This is universally true when

x is positive. When x is negative, things are more complicated. It boils
down to a choice. Some computer algebra systems choose to define an
expression like (−8)1/3 as a certain negative real number (namely, −2).
Others choose to define an expression like (−8)1/3 as a complex number
in the upper half plane of the complex plane (1 + i

√
3). Because of the

ambiguity, some choose to simply declare expressions like (−8)1/3, with a
negative base, to be undefined. The point is, if your computer tells you
that say, (−8)1/3 is undefined, you should realize that you may be expected
to interpret (−8)1/3 as −2.

• For real numbers k and n, and x ̸= 0, k
xn = kx−n.

• For a real number k ̸= 0, f(x)
k

= 1
k
f(x).

• For positive real numbers A and B and all real numbers n,

◦ ln(AB) = ln(A) + ln(B)

◦ ln
(
A
B

)
= ln(A)− ln(B)

◦ ln(An) = n ln(A)
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Appendix D

Units of Measure

Table D.0.1: Distance

Unit Stands For Definition Roughly
m meter the distance light travels

in 1/299792458 of a second
half the height of a
typical doorway

mm millimeter exactly 1/1000 of a meter the thickness of a credit
card

cm centimeter exactly 1/100 of a meter the width of your pinky
finger

km kilometer exactly 1000 meters in parts of Portland
where the city blocks are
square, about 12.5 blocks

in inch exactly 0.0254 meters diameter of a bottle cap
ft foot exactly 12 inches the exterior length of an

average adult male’s shoe
mi mile exactly 5280 feet in parts of Portland

where the city blocks are
square, about 20 blocks

Table D.0.2: Area

Unit Stands For Definition Roughly
cm2 square centimeter the area of a square

whose sides are each
one centimeter

a little less than the
circular area of a new
pencil eraser

in2 square inch the area of a square
whose sides are each
one inch

the area of a
photograph on an ID
card
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Table D.0.3: Volume

Unit Stands For Definition Roughly
cm3 cubic centimeter the volume of a cube

whose sides are each
one centimeter

the volume of a
blueberry

L liter exactly 1000 cubic
centimeters

a bottle of wine is 3/4 of
a liter

mL milliliter exactly 1 cubic
centimeter; 1/1000 of a
liter

the volume of a
blueberry

in3 cubic inch the volume of a cube
whose sides are each
one inch

the volume of an shelled
whole walnut

gal liter exactly 231 cubic inches the volume of the larger
type of plastic milk
containers sold in
supermarkets

Table D.0.4: Time

Unit Stands For Definition Roughly
s second the duration of

9,192,631,770 periods of
the radiation
corresponding to the
transition between the
two hyperfine levels of the
ground state of the
cesium-133 atom

the time it takes you to
say the phrase
“differential calculus”

min minute exactly 60 seconds how long it takes to
microwave a full dinner
plate from the refrigerator

h hour exactly 3600 seconds;
exactly 60 minutes

the length of one episode
of a premium cable
television show

Table D.0.5: Speed

Unit Stands For Definition Roughly
mph mile per hour exactly one mile per hour a typical walking speed

is about three miles per
hour
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Table D.0.6: Mass

Unit Stands For Definition Roughly
kg kilogram the mass of a certain

cylindrical object made of
a platinum-iridium alloy
called the International
Prototype of the
Kilogram, which is stored
in Sèvres, France

the mass of a 500-page
paperback book

mg milligram exactly 1/1000000 of a
kilogram

the mass of a small
snowflake

Table D.0.7: Angle

Unit Stands For Definition Roughly
rad radian the angle subtended at

the center of a circle by
an arc that is equal in
length to the radius of the
circle

a little less than the
angles on an equilateral
triangle

° degree the angle subtended at
the center of a circle by
an arc whose length is
1/360 the circumference of
the circle

a very small angle; if you
could look directly at the
bottom of the sun, and
then moved your eyes to
look at the top of the sun,
you would have moved
your eyes about half of
one degree

Table D.0.8: Force

Unit Stands For Definition Roughly
N newton the force needed to

accelerate one kilogram
from rest up to a speed of
one meter per second
with one second of time

if you hold an apple in
the palm of your hand, it
applies about two
newtons of force



Table D.0.9: Power

Unit Stands For Definition Roughly
kW kilowatt the power to transfer one

thousand joules of energy
in one second (one joule is
the amount of energy
used when one newton of
force pushes an object
one meter)

the power used by a nicer
microwave oven

Appendix E

Solutions to Supplemental
Exercises

1.4 Exercises

1. 4− 2x− h for h ̸= 0

2. The slope is 3.

3. −4− h

4. −4

5.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

6. −7 for h ̸= 0

7. −7
(x+h+4)(x+4)

for h ̸= 0

8. 0 for h ̸= 0

9. 3t2 + 3th+ h2 − 1 for h ̸= 0

148
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10. t2+th−64
t(t+h)

for h ̸= 0

11. 60− 32t− 16h for h ̸= 0

12. −71.2 ft
s

13. The average rate of change in the
coaster’s velocity over the first 7.5 s of
descent is −131

3
ft/s

s .

14. The average velocity experienced

by the ball between the 1.5th second of
play and the third second of play is 0 m

s .

15. Between the first swing and the
29th swing the average rate of change
in the pendulum’s period is −0.1 s

swing .

16. During the second minute of
flight, the average rate of change in the
rocket’s acceleration is 0.13 mph

s s .

2.14 Exercises

1. lim
t→−∞

g(t) = ∞; lim
t→−∞

g(t) does not
exist.

2. lim
x→∞

f(x) = 0; lim
x→0

f(x) exists.

3. lim
t→ 1

3

−
z(t) = 2

3
; lim
t→ 1

3

−
z(t) exists.

4. lim
θ→−1+

g(θ) = 3,000,000; lim
θ→−1+

g(θ)

exists.

5. lim
t→ 7

9

+
T (t) = ∞; lim

t→ 7
9

+
T (t) does not

exist.

6.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

7.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

8. Discontinuities at 0, 3, 4, and 2π.
Continuous from the left at 3. Remov-
able discontinuities at 4 and 2π.

9. k = 0

10. lim
x→4−

(
5− 1

x−4

)
= ∞. This limit

does not exist.

11. lim
x→∞

e2/x

e1/x
= 1. This limit exists.

12. lim
x→2+

x2−4
x2+4

= 0. This limit exists.

13. lim
x→2+

x2−4
x2−4x+4

= ∞. This limit
does not exist.

14. lim
x→∞

ln(x)+ln(x6)
7 ln(x2)

= 1
2
. This limit

exists.

15. lim
x→−∞

3+ 2
x2

3
x2

−2
= −3

2
. This limit ex-

ists.
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16. lim
x→∞

sin
(

πe3x

2ex+4e3x

)
= 1√

2
. This

limit exists.

17. ln(1/x)
ln(x/x) does not exist.

18. lim
x→5

√
x2−12x+35

5−x
=

√
2. This limit

exists.

19. lim
h→0

4(3+h)2−5(3+h)−21
h

= 19. This
limit exists.

20. lim
h→0

5h2+3
2−3h2 = 3

2
. This limit exists.

21. lim
h→0

√
9−h−3
h

= −1
6
. This limit ex-

ists.

22. lim
θ→π

2

sin(θ+π
2 )

sin(2θ+π)
= −1

2
. This limit ex-

ists.

23. lim
x→0+

ln(xe)
ln(ex) = −∞. This limit

does not exist.

24. lim
x→∞

ex = ∞. This limit does not
exist.

25. lim
x→−∞

ex = 0. This limit exists.

26. lim
x→0

ex = 1. This limit exists.

27. lim
x→∞

e−x = 0. This limit exists.

28. lim
x→−∞

e−x = ∞. This limit does

not exist.

29. lim
x→0

e−x = 1. This limit exists.

30. lim
x→∞

ln(x) = ∞. This limit does
not exist.

31. lim
x→1

ln(x) = 0. This limit exists.

32. lim
x→0+

ln(x) = −∞. This limit
does not exist.

33. lim
x→∞

1
x
= 0. This limit exists.

34. lim
x→−∞

1
x
= 0. This limit exists.

35. lim
x→0+

1
x
= ∞. This limit does not

exist.

36. lim
x→0−

1
x

= −∞. This limit does
not exist.

37. lim
x→∞

e1/x = 1. This limit exists.

38. lim
x→∞

1
ex

= 0. This limit exists.

39. lim
x→−∞

1
ex

= ∞. This limit does
not exist.

40. lim
x→∞

1
e−x = ∞. This limit does

not exist.

41. lim
x→−∞

1
e−x = 0. This limit exists.

3.5 Exercises

1. Both methods yield f ′(x) = 2x.

2. Both methods yield f ′(x) = 1
2
√
x
.

3. Both methods yield f ′(x) = 0.

4. If f(x) = sin(x), then f ′(x) =
cos(x).

5. −71.2 ft
s .

6. −32 ft
s2 .

7. beats/min
ft/min

8. gal/mi
mi/hr

9. mi/hr
s

10. mi
s
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11. When Carl jogs at a pace of
300 ft

min his heart rate is 84 beats
min .

12. At the pace of 300 ft
min , Carl’s

heart rate changes relative to his pace
at a rate of 0.02 beats/min

ft/min
.

13. When Hanh drives her pick-up
on level ground at a constant speed of
50 mph, the truck burns fuel at the rate
of 0.03 gal

mi .

14. (On level ground), at the speed of
50 mph, the rate at which Hanh’s truck
burns fuel changes relative to the speed
at a rate of −0.006

gal/mi
mi/hr

.

15. Twenty seconds after lift-off the

space shuttle is cruising at the rate of
266 mi

h .

16. Twenty seconds after lift-off the
velocity of the space shuttle is increas-
ing at the rate 18.9

mi/hr
s .

17. Twenty seconds after lift-off the
space shuttle is at an elevation of
0.7 mi.

18. Twenty seconds after lift-off the
space shuttle’s elevation is increasing at
a rate of 0.074 mi

s .

19. y = 7
32
(x− 1) + 5

8

20. 2
5

4.7 Exercises

1.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y = 0 x

y

2.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

3.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6
x
=

−
3

x
=

2
x

y

4. 4.7.1(c), 4.7.1(d), 4.7.1(e)

5. 4.7.1(b), 4.7.1(d)

6. 4.7.1(a), 4.7.1(c)

7. 4.7.1(c), 4.7.1(d), 4.7.1(e)

8. 4.7.1(c), 4.7.1(d), 4.7.1(e)

9. 4.7.1(e), 4.7.1(f), 4.7.1(g)

10. 4.7.1(g)

11. 4.7.1(e), 4.7.1(f), 4.7.1(g)

12. 4.7.1(a), 4.7.1(c), 4.7.1(e),
4.7.1(f), 4.7.1(g)
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13. 4.7.1(e), 4.7.1(f), 4.7.1(g)

14. The unit for V ′(45) is gal
s and the

unit for V ′′(45) is gal/s
s . The most real-

istic value for V ′(45) is −1.2 gal
s .

15. The unit for R′(45) is gal/s
s , and

the unit for R′′(45) is gal/s
s /s. The most

realistic value for R′(45) is −0.001.

16. The most realistic value for
V ′′(45) is 0.001.

17. The statement is true for some
functions and false for other functions.

18. The statement is true for some
functions and false for other functions.

19. The statement is true for some
functions and false for other functions.

20. The statement is true for some
functions and false for other functions.

21. The statement is true for some
functions and false for other functions.

22. Lisa is right.

23. Janice is right.

24. False

25. True

26. False

27. False

28. False

29. False

30. True

31. True

32. False

33. False

34. True

35. True

36. See the solutions section.

37. −1, 1, 4

38. nowhere

39. (−5, 6)

40. (−6,−3) and (−1, 1)

41. (4, 6)

42. (−3,−1), (1, 4), and (4, 6)

43. (−6,−5)

44. There is no way to tell.

45. −5

46. y = −4(x+ 3) + 14

47.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

48.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x
=

2

x

y
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5.12 Exercises

1. 1

11
11√

x5

2. 35
t8

3. 4
3√
u2

4. eπαπ−1

5. − 28√
t9

6. 4

3
3√
t2

7. 5
[
cos2(x)− sin2(x)

]
or 5 cos(2x)

8. 5
7
tet(2 + t)

9. 4(ln(x) + 1)

10. 2x sin−1(x) + x2
√
1−x2

11. 2t tan−1(t) + 1

12. x67x

3
(7 + x ln(7))

13. 4eθ

(eθ+1)
2

14. 2−8 ln(x)
x5

15. −9
√
t+10

2(3
√
t3−5t)

2

16. sec2(x) tan−1(x)(1+x2)−tan(x)
(tan−1(x))2(1+x2)

17. 1−2t tan−1(t)

(1+t2)2

18. −4(cos(β)+2 sin(β))
(sin(β)−2 cos(β))2

19. See the solutions section.

20. xex
(
2 sin(x) cos(x)+x sin(x) cos(x)+

2x cos2(x)− x
)

21. y = 11(x− 5) + 30

22. y = x+ 4

23. y = 1
2

24. x = 0

25. d2y
dt2

= 99
√
t7

26. f ′ positive over (−∞,−8) and
(2,∞); negative over (−8, 2)

27. f ′ increasing over (−3,∞); de-
creasing over (−∞,−3)

28. f ′′ positive over (−3,∞); nega-
tive over (−∞,−3)

29. f ′(x) = x2 + 6x − 16, f ′′(x) =
2x+ 6

30. π
2
, 7π

6
, 3π

2
, and 11π

6

31. g′(t) = 3 cos(t) (1 + 2 sin(t)),
with zeros at π

2
, 7π

6
, 3π

2
, and 11π

6

32. y = 2

33. 24,749

34. 860

35. 2
3

36. 537

37. −20

38. 494

39. 289
4

40. 2
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6.5 Exercises

1. All three functions have derivatives that simplify to 3e3x.

2. k′(θ) = 1 over
(
−π

2
, π
2

)
3. See the solutions section.

4. −1

5. k′(π
2

)
is undefined.

6. (0, 2) and about (3.2,∞)

7. (2,∞)

8. (−2, 3) and (3,∞)

9. h is differentiable at −3 with h′(−3) = 0

10. yes

11. no

12. no

13. no

14. yes

15. yes

16. 1
2(1+x)

√
x

17. ee
sin(x)+sin(x) cos(x)

18. − sin(x)
|sin(x)|

19. sec2(x sec(x)) sec(x) (1 + x tan(x))

20. sec(x) sec(sec(x)) (sec(x) + tan2(x) tan(sec(x)))

21. 4x cos(x2)
3 3
√

sin(x2)

22. 4 sin(x) (sin(x) + 2x cos(x))

23. 1
x

(
1 + 1

ln(x)

)
24. −1− 1

x

25. 2
3x

+ 4 sec2(x)
3 tan(x)

26. 1− 1
2(x+2)
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27. exe−1

xe+e

28. 4 sec4(ex) tan(ex)ex

29. 1√
e2x−1

30. 1

2
√
x3

csc
(

1√
x

)
cot
(

1√
x

)
31. 1

2
√
x

cos(
√
x)

32. 1
1+4x2

33. x2

3

(
9 sin

(
x
3

)
+ x cos

(
x
3

))
34. 14√

3

√
x5

35. exe
x xex+x2ex−1

x2

36. exe
2
(1 + xe2)

37.
(
4 sin3(x) + 1

2
√

sin3(x)

)
cos(x)

38. 4 (sin(x) cos(x2) + x cos(x) cos(x2)− 2x2 sin(x) · sin(x2))

39. cos(x cos2(x)) cos(x) (cos(x)− 2x sin(x))

7.4 Exercises

1. −1 and 1

2. 6+π
√
3

12−2π
√
3

3. y = 1
3
(x− 1)− 1

4. x sin(x)√
x−1

(
1
x
+ cot(x)− 1

2x−2

)
5. e2x

sin4(x)
4√
x5

(
2− 4 cot(x)− 5

4x

)
6. ln(4x3)

x5 ln(x)

(
3

x ln(4x3)
− 5

x
− 1

x ln(x)

)

8.3 Exercises

1. 8 ft
s

2. approximately 2.701 ft
s

3. approximately 1.248 cm
min

4. decreasing at approximately
0.3188 ft

s

5. 0.2688G newtons per our, for G
measured in N km2

kg2

6. decreasing at approximately
5.553 in

s
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9.8 Exercises

1. See the solutions section.

2. d
dt
(cosh(t)) = sinh(t), d

dt
(sinh(t)) = cosh(t), d2

dt2
cosh(t) = cosh(t), and

d2

dt2
sinh(t) = sinh(t)

3. The only critical number for cosh is 0. The function sinh has no critical
numbers.

4. cosh is increasing on (0,∞), decreasing on (−∞, 0), and concave up on
(−∞,∞); sinh is increasing on (−∞,∞), concave up on (0,∞), and concave
down on (−∞, 0)

5. lim
t→−∞

cosh(t) = lim
t→∞

cosh(t) = lim
t→∞

sinh(t) = ∞; lim
t→−∞

sinh(t) = −∞

6.

t

y

y = cosh(t)

t

y

y = sinh(t)

7. tanh(t) = et−e−t

et+e−t , sech(t) = 2
et+e−t , csch(t) = 2

et−e−t , and coth(t) = et+e−t

et−e−t

8. sech2(t)

9. positive; f is always increasing; f(0) = 0; f ′(0) = 1

10. lim
t→−∞

tanh(t) = −1 and lim
t→∞

tanh(t) = 1
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11.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

y = −1

y = 1

t

y

y = tanh(t)

12. 8, −8, and 0

13. See the solutions section.

14. local minimum points at (−8,−768) and (8,−768); local maximum point
at (0, 0)

15. π
6
, π

2
, 5π

6
, and 3π

2

16. See the solutions section.

17. local minimum points at (0, 1),
(
π
2
, 1
)
, and

(
3π
2
,−1

)
; local maximum points

at
(
π
6
, 5
4

)
,
(
5π
6
, 5
4

)
, and (2π, 0)

18. g′′(t) = 6(t+18)
t5

; g′′(t) = 0 at −18 and g′′(t) is undefined at 0;

Interval g′′ g

(−∞,−18) positive concave up
(−18, 0) negative concave down
(0,∞) positive concave up

inflection point at
(
−18, 1

648

)
19. See the solutions section.

20. See the solutions section.

21. See the solutions section.
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